The metabolic process of purple sulphur bacteria's anoxygenic photosynthesis has been primarily studied in Allochromatium vinosum, a member of the Chromatiaceae family. However, the metabolic processes of purple sulphur bacteria from the Ectothiorhodospiraceae and Halorhodospiraceae families remain unexplored. We have analysed the proteome of Halorhodospira halophila, a member of the Halorhodospiraceae family, which was cultivated with various sulphur compounds.
View Article and Find Full Text PDFA heterodisulfide reductase-like complex (sHdr) and novel lipoate-binding proteins (LbpAs) are central players of a wide-spread pathway of dissimilatory sulfur oxidation. Bioinformatic analysis demonstrate that the cytoplasmic sHdr-LbpA systems are always accompanied by sets of sulfur transferases (DsrE proteins, TusA, and rhodaneses). The exact composition of these sets may vary depending on the organism and sHdr system type.
View Article and Find Full Text PDFMolecular mechanisms underlying the thermal response of cells remain elusive. On the basis of the recent result that the short-time diffusive dynamics of the proteome is an excellent indicator of temperature-dependent bacterial metabolism and death, we used neutron scattering (NS) spectroscopy and molecular dynamics (MD) simulations to investigate the sub-nanosecond proteome mobility in psychro-, meso-, and hyperthermophilic bacteria over a wide temperature range. The magnitude of thermal fluctuations, measured by atomic mean square displacements, is similar among all studied bacteria at their respective thermal cell death.
View Article and Find Full Text PDFis a microaerophilic hydrogen- and sulfur -oxidizing bacterium that assimilates CO via the reverse tricarboxylic acid cycle (rTCA). Key enzymes of this pathway are pyruvate:ferredoxin oxidoreductase (PFOR) and 2-oxoglutarate:ferredoxin oxidoreductase (OGOR), which are responsible, respectively, for the reductive carboxylation of acetyl-CoA to pyruvate and of succinyl-CoA to 2-oxoglutarate, two energetically unfavorable reactions that require a strong reduction potential. We have confirmed, by biochemistry and proteomics, that possesses a pentameric version of these enzyme complexes ((αβγδε)) and that they are highly abundant in the cell.
View Article and Find Full Text PDFTemperature variations have a big impact on bacterial metabolism and death, yet an exhaustive molecular picture of these processes is still missing. For instance, whether thermal death is determined by the deterioration of the whole or a specific part of the proteome is hotly debated. Here, by monitoring the proteome dynamics of , we clearly show that only a minor fraction of the proteome unfolds at the cell death.
View Article and Find Full Text PDFMicrobiology (Reading)
January 2021
The bacterium '' is the model organism for the deeply rooted phylum . This 'water-maker' is an H-oxidizing microaerophile that flourishes in extremely hot marine habitats, and it also thrives on the sulphur compounds commonly found in volcanic environments. '' has hyper-stable proteins and a fully sequenced genome, with some of its essential metabolic pathways deciphered (including energy conservation).
View Article and Find Full Text PDFThe microaerophilic bacterium Aquifex aeolicus is a chemolitoautotroph that uses sulfur compounds as electron sources. The model of oxidation of the energetic sulfur compounds in this bacterium predicts that sulfite would probably be a metabolic intermediate released in the cytoplasm. In this work, we purified and characterized a membrane-bound sulfite dehydrogenase, identified as an SoeABC enzyme, that was previously described as a sulfur reductase.
View Article and Find Full Text PDFElectron bifurcation is here described as a special case of the continuum of electron transfer reactions accessible to two-electron redox compounds with redox cooperativity. We argue that electron bifurcation is foremost an electrochemical phenomenon based on (a) strongly inverted redox potentials of the individual redox transitions, (b) a high endergonicity of the first redox transition, and (c) an escapement-type mechanism rendering completion of the first electron transfer contingent on occurrence of the second one. This mechanism is proposed to govern both the traditional quinone-based and the newly discovered flavin-based versions of electron bifurcation.
View Article and Find Full Text PDFPure phospholipids and membrane fragments from bacterial cells living under various conditions were studied against the influence of the surrounding acidity on the internal dynamics. For that we compared mean square displacements extracted from elastic incoherent neutron scattering data, measured both at low and at neutral pH, of the phospholipids 1,2-dimyristoyl-sn-glycero-3-phosphocholine and of samples from neutralophilic and acidophilic micro-organisms (some being hyperthermophilic and others mesophilic). The lipids showed a slight shift in the phase transition temperature of about 4 degrees under pH variation and became slightly more mobile at lower pH.
View Article and Find Full Text PDFWe have studied the translational migration of a monotopic membrane protein, the bacterial sulfide quinone reductase (SQR) in supported n-bilayers ([Formula: see text]) under the influence of an electric field parallel to the membrane plane. The direction of the migration changes when the charge of the protein changes its sign. Measuring mobilities at different pH enables us to gain experimental physico-chemical data on SQR as its isoelectric point and its estimated oligomeric state (at least trimeric) when inserted in a lipid membrane.
View Article and Find Full Text PDFThe Hdr (heterodisulfide reductase)-like enzyme is predicted, from gene transcript profiling experiments previously published, to be essential in oxidative sulfur metabolism in a number of bacteria and archaea. Nevertheless, no biochemical and physicochemical data are available so far about this enzyme. Genes coding for it were identified in Aquifex aeolicus, a Gram-negative, hyperthermophilic, chemolithoautotrophic and microaerophilic bacterium that uses inorganic sulfur compounds as electron donor to grow.
View Article and Find Full Text PDFMonotopic proteins constitute a class of membrane proteins that bind tightly to cell membranes, but do not span them. We present a FRAPP (Fluorescence Recovery After Patterned Photobleaching) study of the dynamics of a bacterial monotopic protein, SQR (sulfide quinone oxidoreductase) from the thermophilic bacteria Aquifex aeolicus, inserted into two different types of lipid bilayers (EggPC: L-α-phosphatidylcholine (Egg, Chicken) and DMPC: 1,2-dimyristoyl-sn-glycero-3-phosphocholine) supported on two different types of support (mica or glass). It sheds light on the behavior of a monotopic protein inside the bilayer.
View Article and Find Full Text PDFThe extremely acidophilic archaeon Ferroplasma acidiphilum is found in iron-rich biomining environments and is an important micro-organism in naturally occurring microbial communities in acid mine drainage. F. acidiphilum is an iron oxidizer that belongs to the order Thermoplasmatales (Euryarchaeota), which harbors the most extremely acidophilic micro-organisms known so far.
View Article and Find Full Text PDFHow the redox proteins and enzymes involved in bioenergetic pathways are organized is a relevant fundamental question, but our understanding of this is still incomplete. This review provides a critical examination of the electrochemical tools developed in recent years to obtain knowledge of the intramolecular and intermolecular electron transfer processes involved in metabolic pathways. Furthermore, better understanding of the electron transfer processes associated with energy metabolism will provide the basis for the rational design of biotechnological devices such as electrochemical biosensors, enzymatic and microbial fuel cells, and hydrogen production factories.
View Article and Find Full Text PDFVarious models on membrane structure and organization of proteins and complexes in natural membranes emerged during the last years. However, the lack of systematic dynamical studies to complement structural investigations hindered the establishment of a more complete picture of these systems. Elastic incoherent neutron scattering gives access to the dynamics on a molecular level and was applied to natural membranes extracted from the hyperthermophile Aquifex aeolicus and the mesophile Wolinella succinogenes bacteria.
View Article and Find Full Text PDFAcidithiobacillus ferrooxidans is an acidophilic chemolithoautotrophic Gram-negative bacterium that can derive energy from the oxidation of ferrous iron at pH 2 using oxygen as electron acceptor. The study of this bacterium has economic and fundamental biological interest because of its use in the industrial extraction of copper and uranium from ores. For this reason, its respiratory chain has been analysed in detail in recent years.
View Article and Find Full Text PDFAquifex aeolicus isolated from a shallow submarine hydrothermal system belongs to the order Aquificales which constitute an important component of the microbial communities at elevated temperatures. This hyperthermophilic chemolithoautotrophic bacterium, which utilizes molecular hydrogen, molecular oxygen, and inorganic sulfur compounds to flourish, uses the reductive TCA cycle for CO(2) fixation. In this review, the intricate energy metabolism of A.
View Article and Find Full Text PDFHow microorganisms obtain energy is a challenging topic, and there have been numerous studies on the mechanisms involved. Here, we focus on the energy substrate traffic in the hyperthermophilic bacterium Aquifex aeolicus. This bacterium can use insoluble sulfur as an energy substrate and has an intricate sulfur energy metabolism involving several sulfur-reducing and -oxidizing supercomplexes and enzymes.
View Article and Find Full Text PDFThe reduction of molecular oxygen to water is catalyzed by complicated membrane-bound metallo-enzymes containing variable numbers of subunits, called cytochrome c oxidases or quinol oxidases. We previously described the cytochrome c oxidase II from the hyperthermophilic bacterium Aquifex aeolicus as a ba(3)-type two-subunit (subunits I and II) enzyme and showed that it is included in a supercomplex involved in the sulfide-oxygen respiration pathway. It belongs to the B-family of the heme-copper oxidases, enzymes that are far less studied than the ones from family A.
View Article and Find Full Text PDFAquifex aeolicus, a hyperthermophilic and microaerophilic bacterium, obtains energy for growth from inorganic compounds alone. It was previously proposed that one of the respiratory pathways in this organism consists of the electron transfer from hydrogen sulfide (H(2)S) to molecular oxygen. H(2)S is oxidized by the sulfide quinone reductase, a membrane-bound flavoenzyme, which reduces the quinone pool.
View Article and Find Full Text PDFAquifex aeolicus, a highly hyperthermophilic bacterium, grows chemolithoautotrophically at 85 degrees C, with hydrogen as electron donor and oxygen as electron acceptor in the presence of a sulfur compound. Stimulated by its exceptional physiological properties, we have set out to study the oxygen metabolism of this microorganism. With the use of an unconventional integrative proteomic approach combining separation of membrane proteins by Blue-Native electrophoresis, detection of enzyme activities in-gel and direct protein identification by two-dimensional liquid chromatography and tandem mass spectrometry (2D nanoLC-MS/MS), we have obtained evidence for the presence of functional respiratory enzymes in membranes of A.
View Article and Find Full Text PDFThe iron respiratory chain of the acidophilic bacterium Acidithiobacillus ferrooxidans involves various metalloenzymes. Here we demonstrate that the oxygen reduction pathway from ferrous iron (named downhill pathway) is organized as a supercomplex constituted of proteins located in the outer and inner membranes as well as in the periplasm. For the first time, the outer membrane-bound cytochrome c Cyc2 was purified, and we showed that it is responsible for iron oxidation and determined that its redox potential is the highest measured to date for a cytochrome c.
View Article and Find Full Text PDFSulfur oxygenase reductase (SOR) enzyme is responsible for the initial oxidation step of elemental sulfur in archaea. Curiously, Aquifex aeolicus, a hyperthermophilic, chemolithoautotrophic and microaerophilic bacterium, has the SOR-encoding gene in its genome. We showed, for the first time the presence of the SOR enzyme in A.
View Article and Find Full Text PDF