Publications by authors named "Guiqing Liang"

Physiologically-based pharmacokinetic (PBPK) modeling offers a viable approach to predict induction drug-drug interactions (DDIs) with the potential to streamline or reduce clinical trial burden if predictions can be made with sufficient confidence. In the current work, the ability to predict the effect of rifampin, a well-characterized strong CYP3A4 inducer, on 20 CYP3A probes with publicly available PBPK models (often developed using a workflow with optimization following a strong inhibitor DDI study to gain confidence in fraction metabolized by CYP3A4, f, and fraction available after intestinal metabolism, Fg), was assessed. Substrates with a range of f (0.

View Article and Find Full Text PDF

The influence of transporters on the pharmacokinetics of drugs is being increasingly recognized, and drug-drug interactions (DDIs) via modulation of transporters could lead to clinical adverse events. Organic anion-transporting polypeptide 1B (OATP1B) is a liver-specific uptake transporter in humans that can transport a broad range of substrates, including statins. It is a challenge to predict OATP1B-mediated DDIs using preclinical animal models because of species differences in substrate specificity and abundance levels of transporters.

View Article and Find Full Text PDF

Uveal melanoma (UM) is the most common primary intraocular malignancy in the adult eye. Despite the aggressive local management of primary UM, the development of metastases is common with no effective treatment options for metastatic disease. Genetic analysis of UM samples reveals the presence of mutually exclusive activating mutations in the Gq alpha subunits GNAQ and GNA11.

View Article and Find Full Text PDF

Objective: Tuberous sclerosis complex (TSC) is a neurodevelopmental disorder caused by autosomal-dominant pathogenic variants in either the TSC1 or TSC2 gene, and it is characterized by hamartomas in multiple organs, such as skin, kidney, lung, and brain. These changes can result in epilepsy, learning disabilities, and behavioral complications, among others. The mechanistic link between TSC and the mechanistic target of the rapamycin (mTOR) pathway is well established, thus mTOR inhibitors can potentially be used to treat the clinical manifestations of the disorder, including epilepsy.

View Article and Find Full Text PDF

The allosteric inhibitor of the mechanistic target of rapamycin (mTOR) everolimus reduces seizures in tuberous sclerosis complex (TSC) patients through partial inhibition of mTOR functions. Due to its limited brain permeability, we sought to develop a catalytic mTOR inhibitor optimized for central nervous system (CNS) indications. We recently reported an mTOR inhibitor () that is able to block mTOR functions in the mouse brain and extend the survival of mice with neuronal-specific ablation of the 1 gene.

View Article and Find Full Text PDF

Rationale: Osteoporotic vertebral compression fracture (OVCF) accompanying huge spinal epidural hematoma (SEH) is fairly rare. The aim of this report is to investigate the management strategies and treatment outcomes of OVCF accompanying SEH.

Patient Concerns: An 89-year-old female patient was admitted to hospital because of severe back pain and numbness of both lower limbs after a slight fall.

View Article and Find Full Text PDF

Unlabelled: Cervical sagittal balance is an important evaluation index of cervical physiological function and surgical efficacy. Subaxial kyphosis after atlantoaxial fusion is negatively associated with worse clinical outcomes and higher incidence of lower cervical disk degeneration.

Objectives: This study aimed to confirm the factors that influence subaxial lordosis loss after posterior atlantoaxial fusion.

View Article and Find Full Text PDF

Rationale: The thoracic spine is stabilized in the anteroposterior direction by the rib cage and the facet joints, thus thoracic degenerative spondylolisthesis is very uncommon. Here, we report a rare case of thoracic degenerative spondylolisthesis in which the lower thoracic region was the only region involved.

Patient Concerns: We present the case of a 56-year-old Chinese female who suffered from thoracic degenerative spondylolisthesis.

View Article and Find Full Text PDF

Background: Percutaneous endoscopic lumbar discectomy (PELD) has routinely performed in recent years for lumbar disc herniation because of the advances in technology of minimally invasive spine surgery. Two common operating routes for PELD have been introduced in the literature: transforaminal approach (TA) and interlaminar approach (IA). The purpose of our current retrospective clinical trial was to study whether the effect of IA-PELD is better than TA-PELD in the incidence of complications and clinical prognosis scores in the patients with L5-S1 lumbar disc herniation.

View Article and Find Full Text PDF

Excipients, considered "inactive ingredients," are a major component of formulated drugs and play key roles in their pharmacokinetics. Despite their pervasiveness, whether they are active on any targets has not been systematically explored. We computed the likelihood that approved excipients would bind to molecular targets.

View Article and Find Full Text PDF

The serine protease factor XI (FXI) is a prominent drug target as it holds promise to deliver efficacious anticoagulation without an enhanced risk of major bleeds. Several efforts have been described targeting the active form of the enzyme, FXIa. Herein, we disclose our efforts to identify potent, selective, and orally bioavailable inhibitors of FXIa.

View Article and Find Full Text PDF

Inhibition of neprilysin (NEP) is widely studied as a therapeutic target for the treatment of hypertension, heart failure, and kidney disease. Sacubitril/valsartan (LCZ696) is a drug approved to reduce the risk of cardiovascular death in heart failure patients with reduced ejection fraction. LBQ657 is the active metabolite of sacubitril and an inhibitor of NEP.

View Article and Find Full Text PDF

Recent clinical evaluation of everolimus for seizure reduction in patients with tuberous sclerosis complex (TSC), a disease with overactivated mechanistic target of rapamycin (mTOR) signaling, has demonstrated the therapeutic value of mTOR inhibitors for central nervous system (CNS) indications. Given that everolimus is an incomplete inhibitor of the mTOR function, we sought to develop a new mTOR inhibitor that has improved properties and is suitable for CNS disorders. Starting from an in-house purine-based compound, optimization of the physicochemical properties of a thiazolopyrimidine series led to the discovery of the small molecule , a potent and selective brain-penetrant ATP-competitive mTOR inhibitor.

View Article and Find Full Text PDF

Mutant isocitrate dehydrogenase 1 (IDH1) is an attractive therapeutic target for the treatment of various cancers such as AML, glioma, and glioblastoma. We have evaluated 3-pyrimidin-4-yl-oxazolidin-2-ones as mutant IDH1 inhibitors that bind to an allosteric, induced pocket of IDH1. This Letter describes SAR exploration focused on improving both the and metabolic stability of the compounds, leading to the identification of as a potent and selective mutant IDH1 inhibitor that has demonstrated brain penetration and excellent oral bioavailability in rodents.

View Article and Find Full Text PDF

Objective: To study the distribution of bone cement in unilateral puncture percutaneous vertebroplasty (PVP).

Material And Methods: A total of 64 patients with osteoporotic vertebral compression fractures (OVCF) who underwent unilateral PVP were included in this study. The vertebral body was longitudinally divided into four equal parts.

View Article and Find Full Text PDF

Inhibition of mutant IDH1 is being evaluated clinically as a promising treatment option for various cancers with hotspot mutation at Arg. Having identified an allosteric, induced pocket of IDH1, we have explored 3-pyrimidin-4-yl-oxazolidin-2-ones as mutant IDH1 inhibitors for modulation of 2-HG production and potential brain penetration. We report here optimization efforts toward the identification of clinical candidate (), a potent and selective mutant IDH1 inhibitor that has demonstrated brain exposure in rodents.

View Article and Find Full Text PDF

Herein we describe the discovery and characterization of a novel, piperidine-based inhibitor of cholesteryl ester transfer protein (CETP) with a core structure distinct from other reported CETP inhibitors. A versatile synthesis starting from 4-methoxypyridine enabled an efficient exploration of the SAR, giving a lead molecule with potent CETP inhibition in human plasma. The subsequent optimization focused on improvement of pharmacokinetics and mitigation of off-target liabilities, such as CYP inhibition, whose improvement correlated with increased lipophilic efficiency.

View Article and Find Full Text PDF

Surface sampling micro liquid chromatography tandem mass spectrometry (SSμLC-MS/MS) was explored as a quantitative tissue distribution technique for probing compound properties in drug discovery. A method was developed for creating standard curves using surrogate tissue sections from blank tissue homogenate spiked with compounds. The resulting standard curves showed good linearity and high sensitivity.

View Article and Find Full Text PDF

We present a systematic evaluation of the Wajima superpositioning method to estimate the human intravenous (i.v.) pharmacokinetic (PK) profile based on a set of 54 marketed drugs with diverse structure and range of physicochemical properties.

View Article and Find Full Text PDF

Human clinical studies conducted with LCI699 established aldosterone synthase (CYP11B2) inhibition as a promising novel mechanism to lower arterial blood pressure. However, LCI699's low CYP11B1/CYP11B2 selectivity resulted in blunting of adrenocorticotropic hormone-stimulated cortisol secretion. This property of LCI699 prompted its development in Cushing's disease, but limited more extensive clinical studies in hypertensive populations, and provided an impetus for the search for cortisol-sparing CYP11B2 inhibitors.

View Article and Find Full Text PDF

CYP11B2, the aldosterone synthase, and CYP11B1, the cortisol synthase, are two highly homologous enzymes implicated in a range of cardiovascular and metabolic diseases. We have previously reported the discovery of LCI699, a dual CYP11B2 and CYP11B1 inhibitor that has provided clinical validation for the lowering of plasma aldosterone as a viable approach to modulate blood pressure in humans, as well normalization of urinary cortisol in Cushing's disease patients. We now report novel series of aldosterone synthase inhibitors with single-digit nanomolar cellular potency and excellent physicochemical properties.

View Article and Find Full Text PDF

Background: Aldosterone synthase inhibition provides the potential to attenuate both the mineralocorticoid receptor-dependent and independent actions of aldosterone. In vitro studies with recombinant human enzymes showed LCI699 to be a potent, reversible, competitive inhibitor of aldosterone synthase (K i = 1.4 ± 0.

View Article and Find Full Text PDF

The identification of highly potent and orally bioavailable GPR39 agonists is reported. Compound 1, found in a phenotypic screening campaign, was transformed into compound 2 with good activity on both the rat and human GPR39 receptor. This compound was further optimized to improve ligand efficiency and pharmacokinetic properties to yield GPR39 agonists for the potential oral treatment of type 2 diabetes.

View Article and Find Full Text PDF

1. In vitro clearance in liver microsomes is routinely measured in drug discovery and development for new chemical entities. Literature reports indicate that long chain fatty acids such as arachidonic, linoleic and oleic acids may be released over a period of time during microsomal incubations.

View Article and Find Full Text PDF

A series of N'(1),N'(3)-dialkyl-N'(1),N'(3)-di(alkylcarbonothioyl) malonohydrazides have been designed and synthesized as anticancer agents by targeting oxidative stress and Hsp70 induction. Structure-activity relationship (SAR) studies lead to the discovery of STA-4783 (elesclomol), a novel small molecule that has been evaluated in a number of clinical trials as an anticancer agent in combination with Taxol.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvfughncfhbpsi21cghuv1h3dggb0ppn2): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once