The widespread utilization of hydrogen energy has increased the demand for trace hydrogen detection. In this work, we propose a fiber-optic hydrogen sensor based on a Fabry-Pérot Interferometer (FPI) consisting of a fiber-tip graphene-Au-Pd submicron film cantilever. The palladium (Pd) film on the cantilever surface is used as hydrogen-sensitive material to obtain high sensing sensitivity.
View Article and Find Full Text PDFThe paper presents a novel fiber-optic vector magnetic field sensor using a Fabry-Perot interferometer, which consists of an optical fiber end face and a graphene/Au membrane suspended on the ceramic ferrule end face. A pair of gold electrodes are fabricated on the ceramic ferrule by femtosecond laser to transmit electrical current to the membrane. Ampere force is generated when an electrical current flows through the membrane in a perpendicular magnetic field.
View Article and Find Full Text PDFA microbubble-probe whispering gallery mode resonator with high displacement resolution and spatial resolution for displacement sensing is proposed. The resonator consists of an air bubble and a probe. The probe has a diameter of ∼5 µm that grants micron-level spatial resolution.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2022
Nanomechanical sensors made from suspended graphene are sensitive to pressure changes. However, these devices typically function by obtaining an electrical signal based on the static displacement of a suspended graphene membrane and so, in practice, have limited sensitivity and operational range. The present work demonstrates an optomechanical Au/graphene membrane-based gas pressure sensor with ultrahigh sensitivity.
View Article and Find Full Text PDF