Publications by authors named "Guini Hong"

Changes in leukocyte populations may confound the disease-associated miRNA signals in the blood of cancer patients. We aimed to develop a method to detect differentially expressed miRNAs from lung cancer whole blood samples that are not influenced by variations in leukocyte proportions. The Ref-miREO method identifies differential miRNAs unaffected by changes in leukocyte populations by comparing the within-sample relative expression orderings (REOs) of miRNAs from healthy leukocyte subtypes and those from lung cancer blood samples.

View Article and Find Full Text PDF

Identification of individual-level differentially expressed genes (DEGs) is a pre-step for the analysis of disease-specific biological mechanisms and precision medicine. Previous algorithms cannot balance accuracy and sufficient statistical power. Herein, RankCompV2, designed for identifying population-level DEGs based on relative expression orderings, was adjusted to identify individual-level DEGs.

View Article and Find Full Text PDF

Purpose: Serum microRNA (miRNA) holds great potential as a non-invasive biomarker for diagnosing breast cancer (BrC). However, most diagnostic models rely on the absolute expression levels of miRNAs, which are susceptible to batch effects and challenging for clinical transformation. Furthermore, current studies on liquid biopsy diagnostic biomarkers for BrC mainly focus on distinguishing BrC patients from healthy controls, needing more specificity assessment.

View Article and Find Full Text PDF

Background: Pyroptosis is closely related to cancer prognosis. In this study, we tried to construct an individualized prognostic risk model for hepatocellular carcinoma (HCC) based on within-sample relative expression orderings (REOs) of pyroptosis-related lncRNAs (PRlncRNAs).

Methods: RNA-seq data of 343 HCC samples derived from The Cancer Genome Atlas (TCGA) database were analyzed.

View Article and Find Full Text PDF

Background: Serum microRNAs (miRNAs) are promising non-invasive biomarkers for diagnosing glioma. However, most reported predictive models are constructed without a large enough sample size, and quantitative expression levels of their constituent serum miRNAs are susceptible to batch effects, decreasing their clinical applicability.

Methods: We propose a general method for detecting qualitative serum predictive biomarkers using a large cohort of miRNA-profiled serum samples (n = 15,460) based on the within-sample relative expression orderings of miRNAs.

View Article and Find Full Text PDF

Serous ovarian cancer is the most common type of ovarian epithelial cancer and usually has a poor prognosis. The objective of this study was to construct an individualized prognostic model for predicting overall survival in serous ovarian cancer. Based on the relative expression orderings (Ea > Eb/Ea ≤ Eb) of gene pairs closely associated with serous ovarian prognosis, we tried constructing a potential individualized qualitative biomarker by the greedy algorithm and evaluated the performance in independent validation datasets.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates the role of the immune system in the effectiveness of neoadjuvant chemoradiotherapy (nCRT) for patients with locally advanced rectal cancer (LARC).
  • A new analytic approach was used to analyze immune-related gene pairs from 200 LARC patient samples, leading to the identification of an immuno-score signature that correlates with treatment response and patient survival.
  • Results show that patients with a high immuno-score have better sensitivity to nCRT and immunotherapy, indicating the importance of immune components in predicting treatment outcomes for LARC patients.
View Article and Find Full Text PDF

Objective: The accuracy of CA125 or clinical examination in ovarian cancer (OVC) screening is still facing challenges. Serum miRNAs have been considered as promising biomarkers for clinical applications. Here, we propose a single sample classifier (SSC) method based on within-sample relative expression orderings (REOs) of serum miRNAs for OVC diagnosis.

View Article and Find Full Text PDF

Pathological response status is a standard reference for the early evaluation of the effect of neoadjuvant chemoradiation (nCRT) on locally advanced rectal cancer (LARC) patients. Various patients respond differently to nCRT, but identifying the pathological response of LARC to nCRT remains a challenge. Therefore, we aimed to identify a signature that can predict the response of LARC to nCRT.

View Article and Find Full Text PDF

Leukocyte cell proportion changes affect the detection of cancer-associated aberrant DNA methylation alterations in peripheral blood samples. We aimed to detect cellular DNA methylation changes in ovarian cancer (OVC) blood samples avoiding the above-mentioned cell-composition effects. Based on the within-sample relative methylation orderings (RMOs) of CpG loci in leukocyte subtypes, we developed the Ref-RMO method to detect aberrant methylation alterations from OVC blood samples.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a heterogeneous neurodegenerative disease. However, few studies have investigated the heterogeneous gene expression patterns in AD.

Objective And Methods: We examined the gene expression patterns in four brain regions of AD based on the within-sample relative expression orderings (REOs).

View Article and Find Full Text PDF

Background: Precise diagnosis of the tissue origin for metastatic cancer of unknown primary (CUP) is essential for deciding the treatment scheme to improve patients' prognoses, since the treatment for the metastases is the same as their primary counterparts. The purpose of this study is to identify a robust gene signature that can predict the origin for CUPs.

Methods: The within-sample relative gene expression orderings (REOs) of gene pairs within individual samples, which are insensitive to experimental batch effects and data normalizations, were exploited for identifying the prediction signature.

View Article and Find Full Text PDF

Blood-based test has been considered as a promising way to diagnose and study Alzheimer's disease (AD). However, the changed proportions of the leukocytes under disease states could confound the aberrant expression signals observed in mixed-cell blood samples. We have previously proposed a method, Ref-REO, to detect the leukocyte specific expression alterations from mixed-cell blood samples.

View Article and Find Full Text PDF

Due to the invasiveness nature of tissue biopsy, it is common that investigators cannot collect sufficient normal controls for comparison with diseased samples. We developed a pathway enrichment tool, DRFunc, to detect significantly disease-disrupted pathways by incorporating normal controls from other experiments. The method was validated using both microarray and RNA-seq expression data for different cancers.

View Article and Find Full Text PDF

Blood is a promising surrogate for solid tissue to investigate disease-associated molecular biomarkers. However, proportion changes of the constituent cells in the often-used peripheral whole blood (PWB) or peripheral blood mononuclear cell (PBMC) samples may influence the detection of cell-specific alterations under disease states. We propose a simple method, Ref-REO, to detect molecular alterations in leukocytes using the mixed-cell blood samples.

View Article and Find Full Text PDF

Formalin-fixed paraffin-embedded (FFPE) samples represent a valuable resource for clinical researches. However, FFPE samples are usually considered an unreliable source for gene expression analysis due to the partial RNA degradation. In this study, through comparing gene expression profiles between FFPE samples and paired fresh-frozen (FF) samples for three cancer types, we firstly showed that expression measurements of thousands of genes had at least two-fold change in FFPE samples compared with paired FF samples.

View Article and Find Full Text PDF

The highly stable within-sample relative expression orderings (REOs) of gene pairs in a particular type of human normal tissue are widely reversed in the cancer condition. Based on this finding, we have recently proposed an algorithm named RankComp to detect differentially expressed genes (DEGs) for individual disease samples measured by a particular platform. In this paper, with 461 normal lung tissue samples separately measured by four commonly used platforms, we demonstrated that tens of millions of gene pairs with significantly stable REOs in normal lung tissue can be consistently detected in samples measured by different platforms.

View Article and Find Full Text PDF

To precisely diagnose metastasis state is important for tailoring treatments for gastric cancer patients. However, the routinely employed radiological and pathologic tests for tumour metastasis have considerable high false negative rates, which may retard the identification of reproducible metastasis-related molecular biomarkers for gastric cancer. In this research, using three datasets, we firstly shwed that differentially expressed genes (DEGs) between metastatic tissue samples and non-metastatic tissue samples could hardly be reproducibly detected with a proper statistical control when the metastatic and non-metastatic samples were defined by TNM stage alone.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a common aging-related neurodegenerative illness. Recently, many studies have tried to identify AD- or aging-related DNA methylation (DNAm) biomarkers from peripheral whole blood (PWB). However, the origin of PWB biomarkers is still controversial.

View Article and Find Full Text PDF

5-Fluorouracil (5-FU)-based chemotherapy is currently the first-line treatment for gastric cancer. In this study, using gene expression profiles for a panel of cell lines with drug sensitivity data and two cohorts of patients, we extracted a signature consisting of two gene pairs (KCNE2 and API5, KCNE2 and PRPF3) whose within-sample relative expression orderings (REOs) could robustly predict prognoses of gastric cancer patients treated with 5-FU-based chemotherapy. This REOs-based signature was insensitive to experimental batch effects and could be directly applied to samples measured by different laboratories.

View Article and Find Full Text PDF

Aging is associated with many complex diseases such as cancer and neurodegenerative diseases. Recently, many age-related DNA methylation biomarkers in peripheral whole blood have been identified. These biomarkers may reflect DNA methylation changes derived from changes in the number of a specific leukocyte cell type during aging.

View Article and Find Full Text PDF

Detecting aberrant DNA methylation as diagnostic or prognostic biomarkers for cancer has been a topic of considerable interest recently. However, current classifiers based on absolute methylation values detected from a cohort of samples are typically difficult to be transferable to other cohorts of samples. Here, focusing on relative methylation levels, we employed a modified rank-based method to extract reversal pairs of CpG sites whose relative methylation level orderings differ between disease samples and normal controls for cancer diagnosis.

View Article and Find Full Text PDF

Background: Many studies try to identify cancer diagnostic biomarkers by comparing peripheral whole blood (PWB) of cancer samples and healthy controls, explicitly or implicitly assuming that such biomarkers are potential candidate biomarkers for distinguishing cancer from nonmalignant inflammation-associated diseases.

Methods: Multiple PWB gene expression profiles for lung cancer/inflammation-associated pulmonary diseases were used for differential mRNAs identification and comparison and for proportion estimation of PWB cell subtypes.

Results: The differentially expressed genes (DE genes) between lung cancer/inflammation-associated pulmonary patients and healthy controls were reproducibly identified in different datasets.

View Article and Find Full Text PDF

Two strategies are often adopted for enrichment analysis of pathways: the analysis of all differentially expressed (DE) genes together or the analysis of up- and downregulated genes separately. However, few studies have examined the rationales of these enrichment analysis strategies. Using both microarray and RNA-seq data, we show that gene pairs with functional links in pathways tended to have positively correlated expression levels, which could result in an imbalance between the up- and downregulated genes in particular pathways.

View Article and Find Full Text PDF