Publications by authors named "Guinel F"

E107 and E132 are pea mutants that nodulate poorly. Because they have a shoot-controlled nodulation phenotype, we asked if their mutated genes were implicated in the autoregulation of nodulation (AON), a mechanism which consists of two systemic circuits, the positive CEP/CRA2 and the negative CLE/SUNN, coordinated via NIN and miR2111. We further characterized the mutants' phenotype by studying nodule distribution and nodulation efficiency.

View Article and Find Full Text PDF

The arbuscular mycorrhizal (AM) symbiosis between terrestrial plants and AM fungi is regulated by plant hormones. For most of these, a role has been clearly assigned in this mutualistic interaction; however, there are still contradictory reports for cytokinin (CK). Here, pea plants, the wild type (WT) cv.

View Article and Find Full Text PDF

Nodulation is the result of a beneficial interaction between legumes and rhizobia. It is a sophisticated process leading to nutrient exchange between the two types of symbionts. In this association, within a nodule, the rhizobia, using energy provided as photosynthates, fix atmospheric nitrogen and convert it to ammonium which is available to the plant.

View Article and Find Full Text PDF

In legumes, the formation of rhizobial and mycorrhizal root symbioses is a highly regulated process which requires close communication between plant and microorganism. Plant mutants that have difficulties establishing symbioses are valuable tools for unravelling the mechanisms by which these symbioses are formed and regulated. Here E151, a mutant of Pisum sativum cv.

View Article and Find Full Text PDF

Seedlings of parasitic Cuscuta species are autotrophic but can survive only a short period of time, during which they must locate and attach to a suitable host. They have an ephemeral root-like organ considered not a "true" root by most studies. In the present study, two species with contrasting ecology were examined: Cuscuta gronovii, a North American riparian species, and Cuscuta campestris, an invasive dodder that thrives in disturbed habitats.

View Article and Find Full Text PDF

Optimizing nodulation in legumes is a target for crop improvement, and the spatial control of nodulation is just beginning to be unravelled. However, there is currently no method for standard phenotyping of nodulation patterns. Here we present a method and software for the quantitative analysis of nodulation phenotypes.

View Article and Find Full Text PDF

R50 (sym16) is a pea nodulation mutant that accumulates cytokinin (CK) in its vegetative organs. Total CK content increases as the plant ages because of the low activity of the enzyme cytokinin oxidase/dehydrogenase (CKX) responsible for CK degradation. R50 exhibits a large seed with high relative water content, and its seedling establishes itself slowly.

View Article and Find Full Text PDF
Article Synopsis
  • Pea has faced challenges in studying nodulation and mycorrhizae formation due to issues with root transformation and poor growth on agar.
  • A new transformation technique has been developed that successfully complements two non-nodulating pea mutants.
  • Additionally, methods for rhizobial and fungal inoculation have been introduced to facilitate the study of early nodule development and mycorrhizal root infection, respectively.
View Article and Find Full Text PDF

Background And Aims: R50 (sym16) is a pea nodulation mutant with fewer and shorter lateral roots (LR), fewer nodules and high levels of cytokinins (CK). Because a link exists between CK imbalance and abnormal vasculature, the vasculature of the primary root (PR) and LR of R50 was studied and it was compared with that of the wild-type 'Sparkle'. Also nodule vasculature was investigated to correlate R50 low nodulation phenotype with CK accumulation.

View Article and Find Full Text PDF

Ethylene inhibits nodulation in various legumes. In order to investigate strategies employed by Rhizobium to regulate nodulation, the 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene was isolated and characterized from one of the ACC deaminase-producing rhizobia, Rhizobium leguminosarum bv. viciae 128C53K.

View Article and Find Full Text PDF

This is the first report documenting the presence of 1-aminocyclopropane-1-carboxylate (ACC) deaminase in Rhizobium. This enzyme, previously found in free-living bacteria, yeast and fungi, degrades ACC, the immediate precursor of ethylene in higher plants. Thirteen different rhizobial strains were examined by Southern hybridization, Western blots and ACC deaminase enzyme assay.

View Article and Find Full Text PDF

Adenine phosphoribosyltransferase (APT) catalyzes the conversion of adenine and cytokinin bases to the corresponding nucleotides. An Arabidopsis thaliana mutant lacking the major APT isoform, APT1, is male sterile due to defects soon after meiosis. We have now used electron microscopy to define the effects of APT1 deficiency on pollen development to determine whether the changes might be attributed to adenine or cytokinin metabolism.

View Article and Find Full Text PDF

Little is known about the role of phytohormones in the formation of arbuscular mycorrhizas (AM). Although the involvement of ethylene in AM formation is unclear, it is considered very important for several aspects of plant growth and development. The effect of a suspected inhibitory level of ethylene was investigated to help elucidate its role in regulating the formation of AM.

View Article and Find Full Text PDF

In this study, we were interested in learning if cytokinins play a role in the developmental process that leads to nodulation in the pea cv. Sparkle. We demonstrate that the application of the synthetic cytokinin BAP (6-benzyl-amino-purine) results in a number of nodulation-related changes.

View Article and Find Full Text PDF

R50 is characterized as a pleiotropic pea mutant; it forms few nodules and has short lateral roots, short stature and pale leaves. Using grafting techniques, R50 paleness was found to be controlled by the shoot of the mutant whereas the nodulation phenotype was regulated by its root. The paleness of R50 is due to a lower than normal total chlorophyll content in its young leaves.

View Article and Find Full Text PDF

[gamma]-Aminobutyric acid (GABA) synthesis (L-glutamic acid + H+ -> GABA + CO2) is rapidly stimulated by a variety of stress conditions including hypoxia. Recent literature suggests that GABA production and concomitant H+ consumption ameliorates the cytosolic acidification associated with hypoxia or other stresses. This proposal was investigated using isolated asparagus (Asparagus sprengeri Regel) mesophyll cells.

View Article and Find Full Text PDF

E107 (brz) is a pleiotropic mutant of pea (Pisum sativum L. cv Sparkle) characterized by low nodulation, leaf necrosis, excessive ion accumulation, and decreased plant size. The defective nodulation of E107 was studied by light microscopy of lateral roots.

View Article and Find Full Text PDF

We compared nodule initiation in lateral roots of Pisum sativum (L.) cv Sparkle and in a low-nodulating mutant E2 (sym 5). In Sparkle, about 25% of the infections terminated in the epidermis, a similar number stopped in the cortex, and 50% resulted in the formation of a nodule meristem or an emerged nodule.

View Article and Find Full Text PDF

Hand sections of young corn root tips have been used in a study of problems encountered in the binding of fluorescently-labelled lectins to plant tissues. It was found, surprisingly, that with lectins specific for a sugar known to be present (Lotus and Ulex lectins for L-fucose), with a lectin specific for a sugar thought not to be present (wheat-germ agglutinin for N-acetylglucosamine), with non-lectin glycoprotein and protein (gamma-globulin and bovine serum albumin) and with basophilic dyes (alcian blue and toluidine blue), a coincidental binding pattern similar to the pattern of autofluorescence in the same tissue was obtained. Corn root tissues include cell walls composed of complex polysaccharides esterified with ferulic acid residues, as well as mucilages which are highly hydrated and expanded.

View Article and Find Full Text PDF