Publications by authors named "Guimin An"

High-purity ZnO nanorods have been synthesized via a two-step route using zinc acetate as a precursor without any surfactant and additive. In this method, ZnCO3 fibers were first formed in the CO2-ethanol solution, which directed the formation of ZnO nanorods by subsequent treatment in KOH aqueous solution. The as-prepared nanorods were fully characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and Fourier transform Infrared spectroscopy.

View Article and Find Full Text PDF

Palladium-hydrotalcite catalysts were prepared by immobilizing Pd(2+) on hydrotalcite (HT) via an amino acid, arginine (Arg), followed by reduction with NaBH(4) at room temperature. The resulting composite was characterized by different techniques. X-ray photoelectron spectroscopy analysis showed that the loaded Pd on hydrotalcite mainly existed in the form of Pd(0), and distributed uniformly on the support with particle size around 4 nm, as confirmed by transmission electron microscopy examination.

View Article and Find Full Text PDF

Covalent immobilization of glycidyl-group-containing ionic liquids (ILs) on organic and inorganic supports with functional surfaces was achieved, based on the fact that the glycidyl group can actively react with almost all nucleophilic, electrophilic, neutral, and free-radical species. By using polymer spheres with amino- and carboxyl-group-functionalized surfaces as organic supports and silicas (including SBA15 and silica gel) with amino groups attached as inorganic supports, the ionic liquid 1-glycidyl-butylimidazolium chloride was successfully grafted onto these polymer and silica supports, respectively, through reactions between the glycidyl group in the IL and the polar groups on the support surfaces. The resultant samples were examined by transmission electron microscopy, solid-state (13)C NMR spectroscopy, IR spectroscopy, and ion chromatography.

View Article and Find Full Text PDF

We developed a route to synthesize rutile TiO(2) nanocrystals (NCs) with the assistance of 1-butyl-3-methylimidazolium chloride (bmim(+)Cl(-)). The phase transformation from anatase to rutile phase was investigated, and a simple model to describe the phase transformation process was proposed considering that the nucleation and growth of rutile phase were determined by the aggregation manner of anatase NCs and Ostwald ripening process, respectively. It was demonstrated that the surfactant-like nature of the IL used was crucial for controlling the crystallization process via controlling the aggregation manner of the NCs.

View Article and Find Full Text PDF

We report an ionic liquid (IL) assisted hydrothermal method to synthesize anatase TiO(2) nanocrystals (NCs), in which TiCl(4) was used as precursor, 1-butyl-3-methylimidazolium chloride (bmim(+)Cl(-)) as IL, and F(-) or SO(4)(2-) ions as phase transformation inhibitor. The surfactant-like nature of IL was found to play a key role in controlling the crystallization process via controlling the aggregation manner of the NCs. The fine-tuning abilities of the operating parameters of the bmim(+)Cl(-)/TiCl(4)/H(2)O system facilitated the controlling over the shape and size of TiO(2) NCs.

View Article and Find Full Text PDF

Monodispersed TiO2 hybrid microspheres were prepared via the hydrolysis of titanium isopropoxide (TTIP) in ethanol solution containing p-aminophenylacetic acid (APA). The effects of the APA:TTIP molar ratio, water content, reaction time and reaction temperature on the morphology of the resultant spheres were investigated. The products were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction.

View Article and Find Full Text PDF

Integration of eco-friendly method into metallic nanotechnology is one of the key issues in the field of nanoscience research. In this work, we reported a facile method to synthesize noble metal (Pt, Au, and Pd) nanoparticles in sodium alginate (SA) aqueous solution at 100 degrees C. The SA provides circumstance for reducing the metal precursors to their corresponding elemental states, and also acts as stabilizing agent for these metal nanoparticles.

View Article and Find Full Text PDF

Herein we present a novel and facile approach to controllably load ultrafine noble metal nanoparticles on titania through in situ redox reaction between the reductive titanium(III) oxide support and metal salt precursors in aqueous solution. A series of noble metal/TiO(2) nanocomposites with uniform metal dispersion, tunable metal particle size, and narrow metal particle size distribution were obtained.

View Article and Find Full Text PDF

A low-temperature, efficient and one-step deposition method, in which Mn(CH(3)COO)(2)·4H(2)O serves as precursor and O(2) as oxidant, was employed to deposit Mn(3)O(4) nanoparticles on multi-walled carbon nanotubes (MWCNTs) in ethanol solution at 150 and 200 °C. The resulting Mn(3)O(4)/MWCNT composites were characterized by means of different techniques including x-ray diffraction, x-ray photoelectron spectroscopy and transmission electron microscopy. It was indicated that the Mn(3)O(4) nanoparticles were attached uniformly on MWCNTs with sizes less than 10 nm, and the loading amount of Mn(3)O(4) could be tuned by changing the initial weight ratio of Mn(CH(3)COO)(2)·4H(2)O/MWCNT.

View Article and Find Full Text PDF

Chromium oxide nanotubes were successfully prepared using multi-walled carbon nanotubes (MWCNTs) as a template via a supercritical fluid-mediated route. In this method, with chromium (III) nitrate nonahydrate as precursor, chromium oxide was first deposited on MWCNTs in supercritical ethanol in the presence of NH(4)HCO(3). The as-prepared chromium oxide/MWCNT nanocomposites were characterized by transmission electron microscopy, x-ray diffraction, infrared spectroscopy and thermogravimetric analysis.

View Article and Find Full Text PDF

A facile method to decorate the polymeric hollow spheres with ZnS nanoparticles has been presented. In this method, the precursors, Zn(Ac)(2)H(2)O and CH(3)CSNH(2), were first adsorbed by the polymer substrate in supercritical CO(2)-ethanol solution at 35 degrees C. Followed by heating the mixture at 100 degrees C for 2 h, ZnS/polymer composites were obtained.

View Article and Find Full Text PDF

This work describes a method to decorate carbon nanotubes (CNTs) with metallic Pd and Ru nanocrystals via inorganic reactions in supercritical (SC) CO2-methanol solutions. In this route, PdCl2 or RuCl3.3H2O dissolved in SC CO2-methanol solution acted as a metal precursor and CNTs functioned as a template to direct the deposition of produced nanoparticles.

View Article and Find Full Text PDF

ZrO2-carbon nanotube (CNT) composites have been successfully synthesized via decomposition of Zr(NO3)4.5H2O in supercritical carbon dioxide-ethanol solution with dispersed CNTs at relatively low temperatures. The samples were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction spectroscopy (XRD), transmission electron microscopy (TEM), and energy-dispersive X-ray (EDX) analyses.

View Article and Find Full Text PDF