OGG1 is the DNA glycosylase responsible for the removal of the oxidative lesion 8-oxoguanine (8-oxoG) from DNA. The recognition of this lesion by OGG1 is a complex process that involves scanning the DNA for the presence of 8-oxoG, followed by recognition and lesion removal. Structural data have shown that OGG1 evolves through different stages of conformation onto the DNA, corresponding to elementary steps of the 8-oxoG recognition and extrusion from the double helix.
View Article and Find Full Text PDFThe DNA-glycosylase OGG1 oversees the detection and clearance of the 7,8-dihydro-8-oxoguanine (8-oxoG), which is the most frequent form of oxidized base in the genome. This lesion is deeply buried within the double-helix and its detection requires careful inspection of the bases by OGG1 via a mechanism that remains only partially understood. By analyzing OGG1 dynamics in the nucleus of living human cells, we demonstrate that the glycosylase constantly samples the DNA by rapidly alternating between diffusion within the nucleoplasm and short transits on the DNA.
View Article and Find Full Text PDFOne of the most abundant DNA lesions induced by Reactive oxygen species (ROS) is 8-oxoG, a highly mutagenic lesion that compromises genetic instability when not efficiently repaired. 8-oxoG is specifically recognized by the DNA-glycosylase OGG1 that excises the base and initiates the Base Excision Repair pathway (BER). Furthermore, OGG1 has not only a major role in DNA repair but it is also involved in transcriptional regulation.
View Article and Find Full Text PDFThe ComFC protein is essential for natural transformation, a process that plays a major role in the spread of antibiotic resistance genes and virulence factors across bacteria. However, its role remains largely unknown. Here, we show that Helicobacter pylori ComFC is involved in DNA transport through the cell membrane, and is required for the handling of the single-stranded DNA once it is delivered into the cytoplasm.
View Article and Find Full Text PDFDynamics of cell elongation and septation are key determinants of bacterial morphogenesis. These processes are intimately linked to peptidoglycan synthesis performed by macromolecular complexes called the elongasome and the divisome. In rod-shaped bacteria, cell elongation and septation, which are dissociated in time and space, have been well described.
View Article and Find Full Text PDFEnzymes are involved in various types of biological processes. In many cases, they are part of multi-component machineries where enzymes are localized in close proximity to each-other. In such situations, it is still not clear whether inter-enzyme spacing actually plays a role or if the colocalization of complementary activities is sufficient to explain the efficiency of the system.
View Article and Find Full Text PDFA method for labeling teichoic acids in the human pathogen Streptococcus pneumoniae has been developed using a one-pot two-step metabolic labeling approach. The essential nutriment choline modified with an azido-group was incorporated and exposed at the cell surface more rapidly than it reacted with the strain promoted azide alkyne cycloaddition (SPAAC) partner also present in the medium. Once at the cell surface on teichoic acids, coupling of the azido group could then occur within 5 min by the bio-orthogonal click reaction with a DIBO-linked fluorophore.
View Article and Find Full Text PDFThe bacterial cell wall is in part composed of the peptidoglycan (PG) layer that maintains the cell shape and sustains the basic cellular processes of growth and division. The cell wall of Gram-positive bacteria also carries teichoic acids (TAs). In this work, we investigated how TAs contribute to the structuration of the PG network through the modulation of PG hydrolytic enzymes in the context of the Gram-positive bacterium.
View Article and Find Full Text PDFBacterial division is intimately linked to synthesis and remodeling of the peptidoglycan, a cage-like polymer that surrounds the bacterial cell, providing shape and mechanical resistance. The bacterial division machinery, which is scaffolded by the cytoskeleton protein FtsZ, includes proteins with enzymatic, structural or regulatory functions. These proteins establish a complex network of transient functional and/or physical interactions which preserve cell shape and cell integrity.
View Article and Find Full Text PDFFor host cell adhesion and invasion, surface piliation procures benefits for bacteria. A detailed investigation of how pili adhere to host cells is therefore a key aspect in understanding their role during infection. Streptococcus pneumoniae TIGR 4, a clinical relevant serotype 4 strain, is capable of expressing pilus-1 with terminal RrgA, an adhesin interacting with host extracellular matrix (ECM) proteins.
View Article and Find Full Text PDFThe peptidoglycan is a rigid matrix required to resist turgor pressure and to maintain the cellular shape. It is formed by linear glycan chains composed of N-acetylmuramic acid-(β-1,4)-N-acetylglucosamine (MurNAc-GlcNAc) disaccharides associated through cross-linked peptide stems. The peptidoglycan is continually remodelled by synthetic and hydrolytic enzymes and by chemical modifications, including O-acetylation of MurNAc residues that occurs in most Gram-positive and Gram-negative bacteria.
View Article and Find Full Text PDFPropargyl-choline was efficiently incorporated into teichoic acid (TA) polymers on the surface of Streptococcus pneumoniae. The introduction of a fluorophore by click chemistry enabled sufficient labeling of the pneumococcus, as well as its specific detection when mixed with other bacterial species. The labeling is localized at the septal site, suggesting a similar location of the TA and peptidoglycan (PG) synthetic machineries.
View Article and Find Full Text PDFUnusual intramolecular cross-links present in adhesins from Gram-positive bacteria have been used to develop a generic process amenable to biotechnology applications. Based on the crystal structure of RrgA, the Streptococcus pneumoniae pilus adhesin, we provide evidence that two engineered protein fragments retain their ability to associate covalently with high specificity, in vivo and in vitro, once isolated from the parent protein. We determined the optimal conditions for the assembly of the complex and we solved its crystal structure at 2 Å.
View Article and Find Full Text PDFBacterial pathogens recruit circulating proteins to their own surfaces, co-opting the host protein functions as a mechanism of virulence. Particular attention has focused on the binding of plasminogen (Plg) to bacterial surfaces, as it has been shown that this interaction contributes to bacterial adhesion to host cells, invasion of host tissues, and evasion of the immune system. Several bacterial proteins are known to serve as receptors for Plg including glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a cytoplasmic enzyme that appears on the cell surface in this moonlighting role.
View Article and Find Full Text PDFStreptococcus agalactiae (or Group B Streptococcus, GBS) is a commensal bacterium present in the intestinal and urinary tracts of approximately 30% of humans. We and others previously showed that the PI-2a pilus polymers, made of the backbone pilin PilB, the tip adhesin PilA and the cell wall anchor protein PilC, promote adhesion to host epithelia and biofilm formation. Affinity-purified PI-2a pili from GBS strain NEM316 were recognized by N-acetylneuraminic acid (NeuNAc, also known as sialic acid) specific lectins such as Elderberry Bark Lectin (EBL) suggesting that pili are sialylated.
View Article and Find Full Text PDFUnlabelled: Ovococci form a morphological group that includes several human pathogens (enterococci and streptococci). Their shape results from two modes of cell wall insertion, one allowing division and one allowing elongation. Both cell wall synthesis modes rely on a single cytoskeletal protein, FtsZ.
View Article and Find Full Text PDFPili are fibrous appendages expressed on the surface of a vast number of bacterial species, and their role in surface adhesion is important for processes such as infection, colonization, andbiofilm formation. The human pathogen Streptococcus pneumoniae expresses two different types of pili, PI-1 and PI-2, both of which require the concerted action of structural proteins and sortases for their polymerization. The type PI-1 streptococcal pilus is a complex, well studied structure, but the PI-2 type, present in a number of invasive pneumococcal serotypes, has to date remained less well understood.
View Article and Find Full Text PDFRelease of conserved cytoplasmic proteins is widely spread among Gram-positive and Gram-negative bacteria. Because these proteins display additional functions when located at the bacterial surface, they have been qualified as moonlighting proteins. The GAPDH is a glycolytic enzyme which plays an important role in the virulence processes of pathogenic microorganisms like bacterial invasion and host immune system modulation.
View Article and Find Full Text PDFHuman L-ficolin is a soluble protein of the innate immune system able to sense pathogens through its fibrinogen (FBG) recognition domains and to trigger activation of the lectin complement pathway through associated serine proteases. L-Ficolin has been previously shown to recognize pneumococcal clinical isolates, but its ligands and especially its molecular specificity remain to be identified. Using solid-phase binding assays, serum and recombinant L-ficolins were shown to interact with serotype 2 pneumococcal strain D39 and its unencapsulated R6 derivative.
View Article and Find Full Text PDFSerine-rich (Srr) proteins exposed at the surface of Gram-positive bacteria are a family of adhesins that contribute to the virulence of pathogenic staphylococci and streptococci. Lectin-binding experiments have previously shown that Srr proteins are heavily glycosylated. We report here the first mass-spectrometry analysis of the glycosylation of Streptococcus agalactiae Srr1.
View Article and Find Full Text PDFPili are surface-attached, fibrous virulence factors that play key roles in the pathogenesis process of a number of bacterial agents. Streptococcus pneumoniae is a causative agent of pneumonia and meningitis, and the appearance of drug-resistance organisms has made its treatment challenging, especially in developing countries. Pneumococcus-expressed pili are composed of three structural proteins: RrgB, which forms the polymerized backbone, RrgA, the tip-associated adhesin, and RrgC, which presumably associates the pilus with the bacterial cell wall.
View Article and Find Full Text PDFBacterial cell growth and division require the co-ordinated action of peptidoglycan biosynthetic enzymes and cell morphogenesis proteins. However, the regulatory mechanisms that allow generating proper bacterial shape and thus preserving cell integrity remain largely uncharacterized, especially in ovococci. Recently, the conserved eukaryotic-like Ser/Thr protein kinase of Streptococcus pneumoniae (StkP) was demonstrated to play a major role in cell shape and division.
View Article and Find Full Text PDFC1q, a key component of the classical complement pathway, is a major player in the response to microbial infection and has been shown to detect noxious altered-self substances such as apoptotic cells. In this work, using complementary experimental approaches, we identified the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a C1q partner when exposed at the surface of human pathogenic bacteria Streptococcus pneumoniae and human apoptotic cells. The membrane-associated GAPDH on HeLa cells bound the globular regions of C1q as demonstrated by pulldown and cell surface co-localization experiments.
View Article and Find Full Text PDF