Publications by authors named "Guillermo Serrano Najera"

Avian gastrulation requires coordinated flows of thousands of cells to form the body plan. We quantified these flows using their fundamental kinematic units: one attractor and two repellers constituting its Dynamic Morphoskeleton (DM). We have also elucidated the mechanistic origin of the attractor, marking the primitive streak (PS), and controlled its shape, inducing gastrulation flows in the chick embryo that are typical of other vertebrates.

View Article and Find Full Text PDF

During embryonic development, the timing of events at the cellular level must be coordinated across multiple length scales to ensure the formation of a well-proportioned body plan. This is clear during somitogenesis, where progenitors must be allocated to the axis over time whilst maintaining a progenitor population for continued elaboration of the body plan. However, the relative importance of intrinsic and extrinsic signals in timing progenitor addition at the single-cell level is not yet understood.

View Article and Find Full Text PDF

During vertebrate gastrulation, an embryo transforms from a layer of epithelial cells into a multilayered gastrula. This process requires the coordinated movements of hundreds to tens of thousands of cells, depending on the organism. In the chick embryo, patterns of actomyosin cables spanning several cells drive coordinated tissue flows.

View Article and Find Full Text PDF

During gastrulation, early embryos specify and reorganise the topology of their germ layers. Surprisingly, this fundamental and early process does not appear to be rigidly constrained by evolutionary pressures; instead, the morphology of gastrulation is highly variable throughout the animal kingdom. Recent experimental results demonstrate that it is possible to generate different alternative gastrulation modes in single organisms, such as in early cnidarian, arthropod and vertebrate embryos.

View Article and Find Full Text PDF

The morphology of gastrulation driving the internalization of the mesoderm and endoderm differs markedly among vertebrate species. It ranges from involution of epithelial sheets of cells through a circular blastopore in amphibians to ingression of mesenchymal cells through a primitive streak in amniotes. By targeting signaling pathways controlling critical cell behaviors in the chick embryo, we generated crescent- and ring-shaped mesendoderm territories in which cells can or cannot ingress.

View Article and Find Full Text PDF

Experimental Embryology is often referred to as a classical approach of developmental biology that has been to some extent replaced by the introduction of molecular biology and genetic techniques to the field. Inspired by the combination of this approach with advanced techniques to uncover core principles of neural crest development by the laboratory of Roberto Mayor, we review key quantitative examples of experimental embryology from recent work in a broad range of developmental biology questions. We propose that quantitative experimental embryology offers essential ways to explore the reaction of cells and tissues to targeted cell addition, removal, and confinement.

View Article and Find Full Text PDF

Target identification and prioritisation are prominent first steps in modern drug discovery. Traditionally, individual scientists have used their expertise to manually interpret scientific literature and prioritise opportunities. However, increasing publication rates and the wider routine coverage of human genes by omic-scale research make it difficult to maintain meaningful overviews from which to identify promising new trends.

View Article and Find Full Text PDF

Gastrulation consists in the dramatic reorganisation of the epiblast, a one-cell thick epithelial sheet, into a multilayered embryo. In chick, the formation of the internal layers requires the generation of a macroscopic convection-like flow, which involves up to 50,000 epithelial cells in the epiblast. These cell movements locate the mesendoderm precursors into the midline of the epiblast to form the primitive streak.

View Article and Find Full Text PDF