Publications by authors named "Guillermo Rodriguez Bey"

Erythrocyte membrane protein band 4.1 like 3 (EPB41L3: NM_012307.5), also known as DAL1, encodes the ubiquitously expressed, neuronally enriched 4.

View Article and Find Full Text PDF

The role of non-coding regulatory elements and how they might contribute to tissue type specificity of disease phenotypes is poorly understood. Autosomal Dominant Leukodystrophy (ADLD) is a fatal, adult-onset, neurological disorder that is characterized by extensive CNS demyelination. Most cases of ADLD are caused by tandem genomic duplications involving the lamin B1 gene ( ) while a small subset are caused by genomic deletions upstream of the gene.

View Article and Find Full Text PDF

Objective: Oligodendrocytes (OL) are the glial cell type in the CNS that are responsible for myelin formation. The ability to culture OLs in vitro has provided critical insights into the mechanisms underlying their function. However, primary OL cultures are tedious to obtain, difficult to propagate and are not easily conducive to genetic manipulation.

View Article and Find Full Text PDF

Hypomyelinating leukodystrophies comprise a subclass of genetic disorders with deficient myelination of the CNS white matter. Here we report four unrelated families with a hypomyelinating leukodystrophy phenotype harbouring variants in TMEM163 (NM_030923.5).

View Article and Find Full Text PDF

Aims: Alterations in excitability represent an early hallmark in Amyotrophic Lateral Sclerosis (ALS). Therefore, deciphering the factors that impact motor neuron (MN) excitability offers an opportunity to uncover further aetiopathogenic mechanisms, neuroprotective agents, therapeutic targets, and/or biomarkers in ALS. Here, we hypothesised that the lipokine lysophosphatidic acid (lpa) regulates MN excitability via the G-protein-coupled receptor lpa .

View Article and Find Full Text PDF

Fused in sarcoma (FUS) is a predominantly nuclear multifunctional RNA/DNA-binding protein that regulates multiple aspects of gene expression. FUS mutations are associated with familial amyotrophic lateral sclerosis (fALS) and frontotemporal lobe degeneration (FTLD) in humans. At the molecular level, the mutated FUS protein is reduced in the nucleus but accumulates in cytoplasmic granules.

View Article and Find Full Text PDF

Disruption in membrane excitability contributes to malfunction and differential vulnerability of specific neuronal subpopulations in a number of neurological diseases. The adaptor protein p11, and background potassium channel TASK1, have overlapping distributions in the CNS. Here, we report that the transcription factor Sp1 controls p11 expression, which impacts on excitability by hampering functional expression of TASK1.

View Article and Find Full Text PDF

The nuclear lamina is an intermediate filament meshwork adjacent to the inner nuclear membrane (INM) that plays a critical role in maintaining nuclear shape and regulating gene expression through chromatin interactions. Studies have demonstrated that A- and B-type lamins, the filamentous proteins that make up the nuclear lamina, form independent but interacting networks. However, whether these lamin subtypes exhibit a distinct spatial organization or whether their organization has any functional consequences is unknown.

View Article and Find Full Text PDF

Hypomyelinating leukodystrophies are heritable disorders defined by lack of development of brain myelin, but the cellular mechanisms of hypomyelination are often poorly understood. Mutations in TUBB4A, encoding the tubulin isoform tubulin beta class IVA (Tubb4a), result in the symptom complex of hypomyelination with atrophy of basal ganglia and cerebellum (H-ABC). Additionally, TUBB4A mutations are known to result in a broad phenotypic spectrum, ranging from primary dystonia (DYT4), isolated hypomyelination with spastic quadriplegia, and an infantile onset encephalopathy, suggesting multiple cell types may be involved.

View Article and Find Full Text PDF

Synaptic communication is a dynamic process that is key to the regulation of neuronal excitability and information processing in the brain. To date, however, the molecular signals controlling synaptic dynamics have been poorly understood. Membrane-derived bioactive phospholipids are potential candidates to control short-term tuning of synaptic signaling, a plastic event essential for information processing at both the cellular and neuronal network levels in the brain.

View Article and Find Full Text PDF