Nitrate/nitrite-dependent anaerobic oxidation of methane (N-AOM) is a metabolic process recently discovered and partially characterized in terms of the microorganisms and pathways involved. The N-AOM process can be a powerful tool for mitigating the impacts of greenhouse gas emissions from wastewater treatment plants by coupling the reduction of nitrate or nitrite with the oxidation of residual dissolved methane. Besides specific anaerobic methanotrophs such as bacteria members of the phylum NC10 and archaea belonging to the lineage ANME-2d, recent reports suggested that other methane-oxidizing bacteria in syntrophy with denitrifiers can also perform the N-AOM process, which facilitates the application of this metabolic process for the oxidation of residual methane under realistic scenarios.
View Article and Find Full Text PDFWastewaters contaminated with nitrogenous pollutants, derived from anthropogenic activities, have exacerbated our ecosystems sparking environmental problems, such as eutrophication and acidification of water reservoirs, emission of greenhouse gases, death of aquatic organisms, among others. Wastewater treatment facilities (WWTF) combining nitrification and denitrification, and lately partial nitrification coupled to anaerobic ammonium oxidation (anammox), have traditionally been applied for the removal of nitrogen from wastewaters. The present work provides a comprehensive review of the recent biotechnologies developed in which nitrogen-removing processes are relevant for the treatment of both wastewaters and gas emissions.
View Article and Find Full Text PDFThis work proves the feasibility of employing regular secondary activated sludge for the enrichment of a microbial community able to perform the anaerobic oxidation of methane coupled to nitrate reduction (N-AOM). After 96 days of activated sludge enrichment, a clear N-AOM activity was observed in the resulting microbial community. The methane removal potential of the enriched N-AOM culture was then studied in a stirred tank reactor (STR) operated in continuous mode for methane supply and semi-continuous mode for the liquid phase.
View Article and Find Full Text PDFA two-stage bioreactor operated under anoxic denitrifying conditions was evaluated for desulfurization of synthetic biogas laden with HS concentrations between 2500 and 10,000 ppm. HS removal efficiencies higher than 95% were achieved for HS loads ranging from 16.2 to 51.
View Article and Find Full Text PDFThe addition of magnetite nanoparticles (MNPs), reduced graphene oxide (rGO), and reduced graphene oxide decorated with magnetite nanoparticles (rGO-MNPs) was evaluated during biomethane enrichment process. rGO-MNPs presented the highest beneficial impact on the hydrogenotrophic assays with an improvement of 47 % in CH production. The improvement was linked to the increase of the electron shuttling capacity (ESC) by rGO-MNPs addition, which boosted the hydrogenotrophic activity of microorganisms, to the rGO and rGO-MNPs, which served as reservoirs of hydrogen, improving H transport from the gas to the liquid phase, and to the iron ions released, which acted as a dietary supply for microorganisms.
View Article and Find Full Text PDFThe removal efficiency (RE) and bioaerosol emission of a perlite biofilter treating vapors of toluene (T) and/or ethyl acetate (EA) were assessed, under different operating conditions, during 171 days. Under the first stages of operation, a mixture of EA and T was treated, with equivalent inlet loads (ILs) of each compound (ranging from 26 to 84 g m h), achieving a 100% RE of EA, and a maximum elimination capacity (EC) of T of 58.7 g m h.
View Article and Find Full Text PDFThe literature is conflicted on the influence of ammonium on the kinetics and microbial ecology of methanotrophy. In this study, methanotrophic cultures were enriched, under ammonium concentrations ranging from 0 to 200 mM, from an inoculum comprising leachate and top-cover soil from a landfill. Specific CH biodegradation rates were highest (7.
View Article and Find Full Text PDFA theoretical framework was developed and validated for the estimation of HS concentration in biogas produced from complex sulfur-rich effluents. The modeling approach was based on easy-to-obtain data such as biological biogas potential (BBP), chemical oxygen demand, and total sulfur content. Considering the few data required, the model fitted well the experimental HS concentrations obtained from BBP tests and continuous bioreactors reported in the literature.
View Article and Find Full Text PDFThis review aims at holistically analyzing the environmental problems associated with nitrous oxide (NO) emissions by evaluating the most important sources of NO and its environmental impacts. Emissions from wastewater treatment processes and the industrial production of nitric and adipic acid represent nowadays the most important anthropogenic point sources of NO. Therefore, state-of-the-art strategies to mitigate the generation and release to the atmosphere of this greenhouse and O-depleting gas in the waste treatment and industrial sectors are also reviewed.
View Article and Find Full Text PDFObjectives: To assess the effect of one-step temperature increase, from 35 to 55 °C, on the methane production of a mesophilic granular sludge (MGS) treating wine vinasses and the effluent of a hydrogenogenic upflow anaerobic sludge blanket (UASB) reactor.
Results: One-step temperature increase from mesophilic to thermophilic conditions improved methane production regardless of the substrate tested. The biomethane potentials obtained under thermophilic conditions were 1.
A dynamic model describing styrene abatement was developed for a two-phase partitioning bioreactor operated as a biotrickling filter (TPPB-BTF). The model was built as a coupled set of two different systems of partial differential equations depending on whether an irrigation or a non-irrigation period was simulated. The maximum growth rate was previously calibrated from a conventional BTF treating styrene (Part 1).
View Article and Find Full Text PDFResearch on wastewater treatment by means of microalgal-bacterial processes has become a hot topic worldwide during the last two decades. Owing to the lower energy demand for oxygenation, the enhanced nutrient removal and the potential for resource recovery, microalgal-based technologies are nowadays considered as a good alternative to conventional activated sludge treatments in many instances. Nevertheless, biomass harvesting still constitutes one of the major challenges of microalgal-bacterial systems for wastewater treatment, which is hindered by the poor settleability of microalgal biomass.
View Article and Find Full Text PDFObjectives: To assess the effect of adding solid manure fractions on the biomethane potential (BMP) of liquid dairy cow manure and on the biokinetic parameters of the process.
Results: The methanogenic potential of liquid dairy cow manure was strongly effected by adding a solid manure fraction. The 90/10 % (w/w) liquid/solid manure fraction mixture was the best substrate for CH production.
The feasibility of NO removal by the synergistic action of a prevailing denitrifying anoxic methane oxidising (DAMO), and nitrate-reducing and sulfide-oxidising bacterial (NR-SOB) consortium, using CH and H S from biogas as electron donors in a biotrickling filter was investigated. The influence of NO concentration on N O production during this process was also evaluated. The results showed that NO was removed at rates up to 2.
View Article and Find Full Text PDFThe biodegradation of N2O by a non-acclimated secondary activated sludge in the presence of O2 was studied. Batch tests with a headspace containing an initial N2O concentration of ∼400 mg m(-3) (∼200 ppmv) and initial O2 gas concentrations of 0%, 1%, 2%, 5% and 21% were investigated. The effect of O2 on the biokinetic parameters qmax (maximum specific N2O uptake rate) and KS (half-saturation constant), as well as on the bacterial population structure, was evaluated.
View Article and Find Full Text PDFDespite several fungal strains have been retrieved from methane-containing environments, the actual capacity and role of fungi on methane abatement is still unclear. The batch biodegradation tests here performed demonstrated the capacity of Graphium sp. to co-metabolically biodegrade methane and methanol.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
April 2015
The potential of a bioscrubber composed of a packed bed absorption column coupled to a stirred tank denitrification bioreactor (STR) was assessed for 95 days for the continuous abatement of a diluted air emission of N2O at different liquid recycling velocities. N2O removal efficiencies of up to 40 ± 1 % were achieved at the highest recirculation velocity (8 m h(-1)) at an empty bed residence time of 3 min using a synthetic air emission containing N2O at 104 ± 12 ppmv. N2O was absorbed in the packed bed column and further reduced in the STR at efficiencies >80 % using methanol as electron donor.
View Article and Find Full Text PDFToluene biotrickling filtration under anoxic denitrifying conditions was evaluated in two identical bioreactors (R1 and R2) operated at liquid recycling rates of 1.3, 2.7 and 5.
View Article and Find Full Text PDFBiological methane biodegradation is a promising treatment alternative when the methane produced in waste management facilities cannot be used for energy generation. Two-phase partitioning bioreactors (TPPBs), provided with a non-aqueous phase (NAP) with high affinity for the target pollutant, are particularly suitable for the treatment of poorly water-soluble compounds such as methane. Nevertheless, little is known about the influence of the presence of the NAP on the resulting biodegradation kinetics in TPPBs.
View Article and Find Full Text PDFMethanotrophic communities were enriched in three stirred tank reactors continuously supplied with CH4-laden air at 20, 2 and 0.2 gCH4 m(-3) in order to evaluate the influence of CH4 concentration on the biodegradation kinetics, population structure and potential polyhydroxyalkanoate production under sequential nitrogen limitations. The population structure of the enriched cultures, dominated by type I methanotrophs, was influenced by CH4 concentration.
View Article and Find Full Text PDFThe abiotic deterioration of three conventional organic packing materials used in biofiltration (compost, wood bark and Macadamia nutshells) caused by their interaction with toluene (used as a model volatile organic compound) was here studied. The deterioration of the materials was evaluated in terms of structural damage, release of co-substrates and increase of the packing biodegradability. After 21 days of exposure to toluene, all packing materials released co-substrates able to support microbial growth, which were not released by the control materials not exposed to toluene.
View Article and Find Full Text PDFAn innovative biofiltration technology based on anoxic biodegradation was proposed in this work for the treatment of inert VOC-laden emissions from the petrochemical industry. Anoxic biofiltration does not require conventional O2 supply to mineralize VOCs, which increases process safety and allows for the reuse of the residual gas for inertization purposes in plant. The potential of this technology was evaluated in a biotrickling filter using toluene as a model VOC at loads of 3, 5, 12 and 34 g m(-3)h(-1) (corresponding to empty bed residence times of 16, 8, 4 and 1.
View Article and Find Full Text PDFClogging due to biomass accumulation and the loss of structural stability of the packing media are common operational drawbacks of standard gas biofiltration inherent to the traditional biofilter design, which result in prohibitive pressure drop buildups and media channeling. In this work, an innovative step-feed biofilter configuration, with the air emission supplied in either two or three locations along the biofilter height, was tested and compared with a standard biofilter using toluene as a model pollutant and two packing materials: compost and perlite. When using compost, the step-feed biofilter supported similar elimination capacities (EC ≈ 80 g m(-3) h(-1)) and CO2 production rates (200 g m(-3) h(-1)) to those achieved in the standard biofilter.
View Article and Find Full Text PDFToday, methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) emissions represent approximately 98 % of the total greenhouse gas (GHG) inventory worldwide, and their share is expected to increase significantly in this twenty-first century. CO2 represents the most important GHG with approximately 77 % of the total GHG emissions (considering its global warming potential) worldwide, while CH4 and N2O are emitted to a lesser extent (14 and 8 %, respectively) but exhibit global warming potentials 23 and 298 times higher than that of CO2, respectively. Most members of the United Nations, based on the urgent need to maintain the global average temperature 2 °C above preindustrial levels, have committed themselves to significantly reduce their GHG emissions.
View Article and Find Full Text PDFTwo-phase partitioning bioreactors (TPPBs) are based on the addition of an organic phase, often called vector, to a bioreactor in order to increase mass transfer of oxygen or gaseous substrates from the gaseous phase to the aqueous phase. In TPPBs, like in any other reactor design, the characterization of the bioprocess is often required for design, control, and operation purposes. Pulse respirometry is a method that allows for microbial processes characterization through the determination of several stoichiometric and kinetic parameters with relatively little experimental effort.
View Article and Find Full Text PDF