Publications by authors named "Guillermo Ponce-Campos"

The Walnut Gulch Experimental Watershed (WGEW) Long-Term Agroecosystem Research (LTAR) network common experiment addresses the aspirational practice of brush management (BM) to reverse the prevailing condition of woody plant encroachment (WPE) and increase perennial native grass production. Across the western United States, the decision to implement BM includes consideration of management objectives, cost, and the expected impact on a diverse suite of ecosystem services. Maintaining or restoring grass cover will help meet the LTAR sustainable production, economic, and social goals, and averting degradation will meet environmental goals.

View Article and Find Full Text PDF

Studies conducted at sites across ecological research networks usually strive to scale their results to larger areas, trying to reach conclusions that are valid throughout larger enclosing regions. Network representativeness and constituency can show how well conditions at sampling locations represent conditions also found elsewhere and can be used to help scale-up results over larger regions. Multivariate statistical methods have been used to design networks and select sites that optimize regional representation, thereby maximizing the value of datasets and research.

View Article and Find Full Text PDF

Global-scale studies suggest that dryland ecosystems dominate an increasing trend in the magnitude and interannual variability of the land CO sink. However, such analyses are poorly constrained by measured CO exchange in drylands. Here we address this observation gap with eddy covariance data from 25 sites in the water-limited Southwest region of North America with observed ranges in annual precipitation of 100-1000 mm, annual temperatures of 2-25°C, and records of 3-10 years (150 site-years in total).

View Article and Find Full Text PDF

Each year, terrestrial ecosystems absorb more than a quarter of the anthropogenic carbon emissions, termed as land carbon sink. An exceptionally large land carbon sink anomaly was recorded in 2011, of which more than half was attributed to Australia. However, the persistence and spatially attribution of this carbon sink remain largely unknown.

View Article and Find Full Text PDF

Carbon sequestration by terrestrial ecosystems can offset emissions and thereby offers an alternative way of achieving the target of reducing the concentration of CO in the atmosphere. Net primary production (NPP) is the first step in the sequestration of carbon by terrestrial ecosystems. This study quantifies moderate-resolution imaging spectroradiometer (MODIS) NPP from 2000 to 2014 at the country level along with its response to drought and land cover change.

View Article and Find Full Text PDF

Grasslands across the United States play a key role in regional livelihood and national food security. Yet, it is still unclear how this important resource will respond to the prolonged warm droughts and more intense rainfall events predicted with climate change. The early 21st-century drought in the southwestern United States resulted in hydroclimatic conditions that are similar to those expected with future climate change.

View Article and Find Full Text PDF

Photosynthesis is the process by which plants harvest sunlight to produce sugars from carbon dioxide and water. It is the primary source of energy for all life on Earth; hence it is important to understand how this process responds to climate change and human impact. However, model-based estimates of gross primary production (GPP, output from photosynthesis) are highly uncertain, in particular over heavily managed agricultural areas.

View Article and Find Full Text PDF

Climate change is predicted to increase both drought frequency and duration, and when coupled with substantial warming, will establish a new hydroclimatological model for many regions. Large-scale, warm droughts have recently occurred in North America, Africa, Europe, Amazonia and Australia, resulting in major effects on terrestrial ecosystems, carbon balance and food security. Here we compare the functional response of above-ground net primary production to contrasting hydroclimatic periods in the late twentieth century (1975-1998), and drier, warmer conditions in the early twenty-first century (2000-2009) in the Northern and Southern Hemispheres.

View Article and Find Full Text PDF