Triple-negative breast cancer (TNBC) is a heterogeneous disease with limited treatment options. To characterize TNBC heterogeneity, we defined transcriptional, epigenetic, and metabolic subtypes and subtype-driving super-enhancers and transcription factors by combining functional and molecular profiling with computational analyses. Single-cell RNA sequencing revealed relative homogeneity of the major transcriptional subtypes (luminal, basal, and mesenchymal) within samples.
View Article and Find Full Text PDFUnlabelled: Inflammatory breast cancer (IBC) is a difficult-to-treat disease with poor clinical outcomes due to high risk of metastasis and resistance to treatment. In breast cancer, CD44+CD24- cells possess stem cell-like features and contribute to disease progression, and we previously described a CD44+CD24-pSTAT3+ breast cancer cell subpopulation that is dependent on JAK2/STAT3 signaling. Here we report that CD44+CD24- cells are the most frequent cell type in IBC and are commonly pSTAT3+.
View Article and Find Full Text PDFTo define transcriptional dependencies of triple-negative breast cancer (TNBC), we identified transcription factors highly and specifically expressed in primary TNBCs and tested their requirement for cell growth in a panel of breast cancer cell lines. We found that (engrailed 1) is overexpressed in TNBCs and its downregulation preferentially and significantly reduced viability and tumorigenicity in TNBC cell lines. By integrating gene expression changes after EN1 downregulation with EN1 chromatin binding patterns, we identified genes involved in WNT and Hedgehog signaling, neurogenesis, and axonal guidance as direct EN1 transcriptional targets.
View Article and Find Full Text PDFMembers of the KDM5 histone H3 lysine 4 demethylase family are associated with therapeutic resistance, including endocrine resistance in breast cancer, but the underlying mechanism is poorly defined. Here we show that genetic deletion of KDM5A/B or inhibition of KDM5 activity increases sensitivity to anti-estrogens by modulating estrogen receptor (ER) signaling and by decreasing cellular transcriptomic heterogeneity. Higher KDM5B expression levels are associated with higher transcriptomic heterogeneity and poor prognosis in ER breast tumors.
View Article and Find Full Text PDFRecurrent mutations in histone-modifying enzymes imply key roles in tumorigenesis, yet their functional relevance is largely unknown. Here, we show that JARID1B, encoding a histone H3 lysine 4 (H3K4) demethylase, is frequently amplified and overexpressed in luminal breast tumors and a somatic mutation in a basal-like breast cancer results in the gain of unique chromatin binding and luminal expression and splicing patterns. Downregulation of JARID1B in luminal cells induces basal genes expression and growth arrest, which is rescued by TGFβ pathway inhibitors.
View Article and Find Full Text PDFEpithelial-stromal cell interactions have an important role in breast tumor progression, but the molecular mechanisms underlying these effects are just beginning to be understood. We previously described that fibroblasts promote, whereas normal myoepithelial cells inhibit, the progression of ductal carcinoma in situ (DCIS) to invasive breast carcinomas by using a xenograft model of human DCIS. Here, we report that the tumor growth and progression-promoting effects of fibroblasts are at least in part due to increased COX-2 expression in tumor epithelial cells provoked by their interaction with fibroblasts.
View Article and Find Full Text PDFAccumulating evidence indicates that progestins are involved in controlling mammary gland tumorigenesis. Here, we assessed the molecular mechanisms of progestin action in breast cancer models with different phenotypes. We examined C4HD cells, an estrogen (ER) and progesterone (PR) receptor-positive murine breast cancer model in which progestins exert sustained proliferative response, the LM3 murine metastatic mammary tumor cell line, which lacks PR and ER expression, and human PR null T47D-Y breast cancer cells.
View Article and Find Full Text PDFMice bearing LP07 lung adenocarcinoma present some characteristics similar to those shown in patients with several malignant diseases. LP07 tumor bearers develop paraneoplastic syndromes such as cachexia, leukocytosis, and hypercalcemia, partly due to a systemic inflammatory response. We analyzed some of the mechanisms involved in the effectiveness of the association of the appetite-stimulant medroxiprogesterone acetate (MPA) and the nonselective cyclooxigenase (COX) inhibitor indomethacin (INDO) in LP07 tumor bearing mice.
View Article and Find Full Text PDFMice bearing LP07 lung adenocarcinoma show some characteristics that are similar to those present in patients with NSCLC. LP07 tumor-bearing mice develop the paraneoplastic syndromes of cachexia, leukocytosis and hypercalcemia. These symptoms may be partly due to a systemic inflammatory response.
View Article and Find Full Text PDFSystemic syndromes characterized by a persistent activity of circulating mediators (cytokines) are frequently present with advanced cancer. We grouped under the general heading of "Systemic Immune-Metabolic Syndrome (SIMS)" a particular variety of distressing systemic syndrome characterized by dysregulation of the psycho-neuro-immune-endocrine homeostasis, with overlapping clinical manifestations. SIMS may include cachexia, anorexia, nausea, early satiety, fatigue, tumor fever, cognitive changes and superinfection.
View Article and Find Full Text PDF