The use of titanium as a biomaterial for the treatment of dental implants has been successful and has become the most viable and common option. However, in the last three decades, new alternatives have emerged, such as polymers that could replace metallic materials. The aim of this research work is to demonstrate the structural effects caused by the fatigue phenomenon and the comparison with polymeric materials that may be biomechanically viable by reducing the stress shielding effect at the bone-implant interface.
View Article and Find Full Text PDFDental implants have become an alternative to replace the teeth of people suffering from edentulous and meet the physiological and morphological characteristics (recovering 95% of the chewing function). The evolution and innovation of biomaterials for dental implants have had a trajectory that dates back to prehistory, where dental pieces were replaced by ivory or seashells, to the present day, where they are replaced by metallic materials such as titanium or ceramics such as zirconium or fiberglass. The numerical evaluation focuses on comparing the stress distribution and general displacement between different dental implants and a healthy tooth when applying a force of 850 N.
View Article and Find Full Text PDFInt J Environ Res Public Health
March 2022
Chest compression is a parameter of injury criteria assessment for human beings. Additionally, it is used to find the external compression response as a result of vehicle crashes, falls, or sporting impacts. This behavioral feature is described by many deterministic models related to specific experimental tests, hindering distinct scenarios.
View Article and Find Full Text PDFBiofuels represent an energy option to mitigate polluting gases. However, technical problems must be solved, one of them is to improve the combustion process. In this study, the geometry of a piston head for a diesel engine was redesigned.
View Article and Find Full Text PDFJ Craniofac Surg
January 2020
Tumors, trauma and infections are the main reasons for subjecting a patient to a bone reconstruction made with the use of bone grafts or prosthetic elements, using for example components such as osteosynthesis plates, meshes and screws for their stabilization.This study focuses on the photoelastic analysis of a customized prosthesis of the jaw for a patient diagnosed with osteonecrosis. A resin model was manufactured as follows: DICOM files were processed in ScanIP software to obtain an STL file that was used to generate an antagonist model of the healthy section of the jaw using CATIA software, then, models were printed in Acrylonitrile Butadiene Styrene (ABS).
View Article and Find Full Text PDF