A straightforward in situ detection method for dengue infection was demonstrated through the molecular imprinting of a dengue nonstructural protein 1 (NS1) epitope into an electropolymerized molecularly imprinted polyterthiophene (E-MIP) film sensor. The key enabling step in the sensor fabrication is based on an epitope imprinting strategy, in which short peptide sequences derived from the original target molecules were employed as the main template for detection and analysis. The formation of the E-MIP sensor films was facilitated using cyclic voltammetry (CV) and monitored in situ by electrochemical quartz crystal microbalance (EC-QCM).
View Article and Find Full Text PDFMonitoring of pollution index values in sediments is crucial in assessing the environmental impacts of toxic metals in a given location. These indices are typically acquired using elaborate and tedious calibration curve-dependent techniques such as (inductively coupled plasma - optical emission spectroscopy) ICP-OES and (atomic absorption spectroscopy) AAS. In this study, laser-induced breakdown spectroscopy (LIBS) was used as a simple and fast alternative method for estimating enrichment factor (EF) and contamination factor (CF) of the sediment samples obtained from selected mining sites.
View Article and Find Full Text PDFThe significance and epidemiological effects of metals to life necessitate the development of direct, efficient, and rapid method of analysis. Taking advantage of its simple, fast, and high-throughput features, we present a novel approach to metal ion detection by matrix-functionalized magnetic nanoparticle (matrix@MNP)-assisted MALDI-MS. Utilizing 21 biologically and environmentally relevant metal ion solutions, the performance of core and matrix@MNP against conventional matrixes in MALDI-MS and laser desorption ionization (LDI) MS were systemically tested to evaluate the versatility of matrix@MNP as ionization element.
View Article and Find Full Text PDF