Publications by authors named "Guillermo Lopez-Reyes"

Identifying unequivocal signs of life on Mars is one of the most important objectives for sending missions to the red planet. Here we report Red Stone, a 163-100 My alluvial fan-fan delta that formed under arid conditions in the Atacama Desert, rich in hematite and mudstones containing clays such as vermiculite and smectites, and therefore geologically analogous to Mars. We show that Red Stone samples display an important number of microorganisms with an unusual high rate of phylogenetic indeterminacy, what we refer to as "dark microbiome", and a mix of biosignatures from extant and ancient microorganisms that can be barely detected with state-of-the-art laboratory equipment.

View Article and Find Full Text PDF
Article Synopsis
  • Before the Perseverance rover, Jezero crater's floor was theorized to have different origins, including lake-related or volcanic processes.
  • SuperCam's findings over the first 286 days indicated a volcanic terrain characterized by varying compositions, primarily basaltic, with higher levels of plagioclase in upper strata and richer pyroxene in lower strata.
  • The study identified the first Martian cumulate rock, highlighting its olivine-rich content and suggesting brief past watery conditions based on the presence of various alteration materials.
View Article and Find Full Text PDF

The 2020s could be called, with little doubt, the "Mars decade". No other period in space exploration history has experienced such interest in placing orbiters, rovers and landers on the Red Planet. In 2021 alone, the Emirates' first Mars Mission (the Hope orbiter), the Chinese Tianwen-1 mission (orbiter, lander and rover), and NASA's Mars 2020 Perseverance rover reached Mars.

View Article and Find Full Text PDF

The Mars 2020 Perseverance rover landed on February 18, 2021, and has started ground operations. The ExoMars rover will touch down on June 10, 2023. Perseverance will be the first-ever Mars sample caching mission-a first step in sample return to Earth.

View Article and Find Full Text PDF

In this work, the analytical research performed by the Raman Laser Spectrometer (RLS) team during the ExoFiT trial is presented. During this test, an emulator of the Rosalind Franklin rover was remotely operated at the Atacama Desert in a Mars-like sequence of scientific operations that ended with the collection and the analysis of two drilled cores. The in-situ Raman characterization of the samples was performed through a portable technology demonstrator of RLS (RAD1 system).

View Article and Find Full Text PDF

The SuperCam instrument suite provides the Mars 2020 rover, Perseverance, with a number of versatile remote-sensing techniques that can be used at long distance as well as within the robotic-arm workspace. These include laser-induced breakdown spectroscopy (LIBS), remote time-resolved Raman and luminescence spectroscopies, and visible and infrared (VISIR; separately referred to as VIS and IR) reflectance spectroscopy. A remote micro-imager (RMI) provides high-resolution color context imaging, and a microphone can be used as a stand-alone tool for environmental studies or to determine physical properties of rocks and soils from shock waves of laser-produced plasmas.

View Article and Find Full Text PDF

We evaluated the effectiveness of the ExoMars Raman laser spectrometer (RLS) to determine the degree of serpentinization of olivine-rich units on Mars. We selected terrestrial analogs of martian ultramafic rocks from the Leka Ophiolite Complex (LOC) and analyzed them with both laboratory and flight-like analytical instruments. We first studied the mineralogical composition of the samples (mostly olivine and serpentine) with state-of-the-art diffractometric (X-ray diffractometry [XRD]) and spectroscopic (Raman, near-infrared spectroscopy [NIR]) laboratory systems.

View Article and Find Full Text PDF

This work aims to evaluate whether the multi-point analysis the ExoMars Raman Laser Spectrometer (RLS) will perform on powdered samples could serve to classify ultramafic rocks on Mars. To do so, the RLS ExoMars Simulator was used to study terrestrial analogues of Martian peridotites and pyroxenites by applying the operational constraints of the Raman spectrometer onboard the Rosalind Franklin rover. Besides qualitative analysis, RLS-dedicated calibration curves have been built to estimate the relative content of olivine and pyroxenes in the samples.

View Article and Find Full Text PDF

In the present work, near-infrared, laser-induced breakdown spectroscopy, Raman, and X-ray diffractometer techniques have been complementarily used to carry out a comprehensive characterization of a terrestrial analogue selected from the Chesapeake Bay impact structure (CBIS). The obtained data clearly highlight the key role of Raman spectroscopy in the detection of minor and trace compounds, through which inferences about geological processes occurred in the CBIS can be extrapolated. Beside the use of commercial systems, further Raman analyses were performed by the Raman laser spectrometer (RLS) ExoMars Simulator.

View Article and Find Full Text PDF

We present the compositional analysis of three terrestrial analogues of Martian olivine-bearing rocks derived from both laboratory and flight-derived analytical instruments. In the first step, state-of-the-art spectroscopic (XRF, NIR and Raman) and diffractometric (XRD) laboratory systems were complementary used. Besides providing a detailed mineralogical and geochemical characterization of the samples, results comparison shed light on the advantages ensured by the combined use of Raman and NIR techniques, being these the spectroscopic instruments that will soon deploy (2021) on Mars as part of the ExoMars/ESA rover payload.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionq5hesda6mr7nohj199cgpgne3tla5vmh): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once