We study and characterize local density fluctuations of ordered and disordered hyperuniform point distributions on spherical surfaces. In spite of the extensive literature on disordered hyperuniform systems in Euclidean geometries, to date few works have dealt with the problem of hyperuniformity in curved spaces. Indeed, some systems that display disordered hyperuniformity, like the spatial distribution of photoreceptors in avian retina, actually occur on curved surfaces.
View Article and Find Full Text PDFIn light of the coarse-grained Monte Carlo numerical simulation method, the magnetosome chain stability of magnetotactic bacteria is analysed and discussed. This discrete chain of magnetic nanoparticles, encapsulated in a lipid membrane and flanked by filaments, orients bacteria in the geomagnetic field as a compass needle. Each magnetosome is a magnetite or greigite nanocrystal encapsulated in a soft lipid shell.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
May 2015
Periodical patterns of vegetation in an arid or semiarid ecosystem are described using statistical mechanics and Monte Carlo numerical simulation technique. Plants are characterized by the area that each individual occupies and a facilitation-competition pairwise interaction. Assuming that external resources (precipitation, solar radiation, nutrients, etc.
View Article and Find Full Text PDFThe critical behaviour of the Ising ferromagnet confined in pores of radius R and length L is studied by means of Monte Carlo computer simulations. Quasi-cylindrical pores are obtained by replicating n-times a triangular lattice disc of radius R, where L = na and a is the spacing between consecutive replications. So, spins placed at the surface of the pores have less nearest-neighbours (NN) as compared to 8 NN for spins in the bulk.
View Article and Find Full Text PDFA theoretical treatment of some of the factors influencing air seeding at the pit membranes of xylem vessels is given. Pit membrane structure, viewed as a three-dimensional mesh of intercrossing fibrils, and vulnerability to water-stress-induced air seeding are examined in the context of the Young-Laplace equation. Simple geometrical considerations of the porous membrane show that the vapor-liquid interface curvature radius is a function of fiber-fiber distance, fiber radius, wetting angle and position of the wetting line.
View Article and Find Full Text PDFWe consider the clustering of Lennard-Jones particles by using an energetic connectivity criterion proposed long ago by Hill [J. Chem. Phys.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
March 2005
We consider the clustering and percolation of continuum systems whose particles interact via the Lennard-Jones pair potential. A cluster definition is used according to which two particles are considered directly connected (bonded) at time t if they remain within a distance d, the connectivity distance, during at least a time of duration tau, the residence time. An integral equation for the corresponding pair connectedness function, recently proposed by two of the authors [Phys.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2002
A generalization of the van der Waals equation of state is presented for a confined fluid in a nanopore. The pressure in the fluid, confined in a narrow pore of infinite length, has tensorial character. From this hypothesis, the Helmholtz free energy is constructed and expressions for the axial and transversal components of the pressure tensor are obtained.
View Article and Find Full Text PDF