Oxysterols are structurally similar to cholesterol, but are characterized by one or more additional oxygen-containing functional groups. These compounds are implicated in inflammation given their ability to cause irreversible damage to vascular cells. The aim of this study was to study the alteration of some inflammatory biomarkers in Wistar rats in response to dietary oxysterols.
View Article and Find Full Text PDFThe fatty acid profile of hepatocytes and adipocytes is determined by the composition of the dietary lipids. It remains unclear which fatty acid components contribute to the development or reduction of insulin resistance. The present work examined the fatty acid composition of both tissues in sucrose-induced obese rats receiving fish oil to determine whether the effect of dietary (n-3) polyunsaturated fatty acids (PUFAs) on the reversion of metabolic syndrome in these rats is associated to changes in the fatty acid composition of hepatocyte and adipocyte membrane lipids.
View Article and Find Full Text PDFCd36 is an integral membrane glycoprotein expressed on the surface of cells active in fatty acid metabolism (adipocytes, muscle cells, platelets, monocytes, heart and intestine cells). This protein plays diverse functions including uptake of long-chain fatty acids and oxidized low-density lipoproteins. A recent report demonstrates that Cd36 deficiency underlies insulin resistance, defective fatty acid metabolism and hypertriglyceridemia in spontaneously hypertensive rats (SHRs).
View Article and Find Full Text PDFDietary fish oil rich in (n-3) fatty acids plays an important role in reducing abnormalities associated with the metabolic syndrome and mortality from coronary heart disease. We investigated the effects of dietary fish oil on the metabolic syndrome in a high-sucrose-fed rat model. The model was achieved by the administration of 30% sucrose in drinking water in male Wistar rats during 21 weeks.
View Article and Find Full Text PDF