This work explores the design of mammography-based machine learning classifiers (MLC) and proposes a new method to build MLC for breast cancer diagnosis. We massively evaluated MLC configurations to classify features vectors extracted from segmented regions (pathological lesion or normal tissue) on craniocaudal (CC) and/or mediolateral oblique (MLO) mammography image views, providing BI-RADS diagnosis. Previously, appropriate combinations of image processing and normalization techniques were applied to reduce image artifacts and increase mammograms details.
View Article and Find Full Text PDF