Arthritis Rheumatol
October 2024
The heterogeneity of systemic lupus erythematosus (SLE) can be explained by epigenetic alterations that disrupt transcriptional programs mediating environmental and genetic risk. This study evaluated the epigenetic contribution to SLE heterogeneity considering molecular and serological subtypes, genetics and transcriptional status, followed by drug target discovery. We performed a stratified epigenome-wide association studies of whole blood DNA methylation from 213 SLE patients and 221 controls.
View Article and Find Full Text PDFIntroduction: Current therapeutic management of lupus nephritis (LN) fails to induce long-term remission in over 50% of patients, highlighting the urgent need for additional options.
Methods: We analyzed differentially expressed genes (DEGs) in peripheral blood from patients with active LN ( = 41) and active nonrenal lupus ( = 62) versus healthy controls (HCs) ( = 497) from the European PRECISESADS project (NTC02890121), and dysregulated gene modules in a discovery ( = 26) and a replication ( = 15) set of active LN cases.
Results: Replicated gene modules qualified for correlation analyses with serologic markers, and regulatory network and druggability analysis.
Objective: To link changes in the B-cell transcriptome from systemic lupus erythematosus (SLE) patients with those in their macroenvironment, including cellular and fluidic components.
Methods: Analysis was performed on 363 patients and 508 controls, encompassing transcriptomics, metabolomics, and clinical data. B-cell and whole-blood transcriptomes were analysed using DESeq and GSEA.
Objectives: To unveil biological milieus underlying low disease activity (LDA) and remission versus active systemic lupus erythematosus (SLE).
Methods: We determined differentially expressed pathways (DEPs) in SLE patients from the PRECISESADS project (NTC02890121) stratified into patients fulfilling and not fulfilling the criteria of (1) Lupus LDA State (LLDAS), (2) Definitions of Remission in SLE remission, and (3) LLDAS exclusive of remission.
Results: We analysed data from 321 patients; 40.
J Autoimmun
November 2023
Brief Bioinform
September 2022
Objectives: Systemic Lupus Erythematosus is a complex autoimmune disease that leads to significant worsening of quality of life and mortality. Flares appear unpredictably during the disease course and therapies used are often only partially effective. These challenges are mainly due to the molecular heterogeneity of the disease, and in this context, personalized medicine-based approaches offer major promise.
View Article and Find Full Text PDFMultisystem inflammatory syndrome in children (MIS-C) presents with fever, inflammation and pathology of multiple organs in individuals under 21 years of age in the weeks following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Although an autoimmune pathogenesis has been proposed, the genes, pathways and cell types causal to this new disease remain unknown. Here we perform RNA sequencing of blood from patients with MIS-C and controls to find disease-associated genes clustered in a co-expression module annotated to CD56CD57 natural killer (NK) cells and exhausted CD8 T cells.
View Article and Find Full Text PDFBackground: Autoimmune diseases are heterogeneous pathologies with difficult diagnosis and few therapeutic options. In the last decade, several omics studies have provided significant insights into the molecular mechanisms of these diseases. Nevertheless, data from different cohorts and pathologies are stored independently in public repositories and a unified resource is imperative to assist researchers in this field.
View Article and Find Full Text PDFThere is currently no approved treatment for primary Sjögren's syndrome, a disease that primarily affects adult women. The difficulty in developing effective therapies is -in part- because of the heterogeneity in the clinical manifestation and pathophysiology of the disease. Finding common molecular signatures among patient subgroups could improve our understanding of disease etiology, and facilitate the development of targeted therapeutics.
View Article and Find Full Text PDFHigh amount of polyclonal free light chains (FLC) are reported in systemic autoimmune diseases (SAD) and we took advantage of the PRECISESADS study to better characterize them. Serum FLC levels were explored in 1979 patients with SAD (RA, SLE, SjS, Scl, APS, UCTD, MCTD) and 614 healthy controls. Information regarding clinical parameters, disease activity, medications, autoantibodies (Ab) and the interferon α and/or γ scores were recorded.
View Article and Find Full Text PDFObjective: To identify the genetic variants that affect gene expression (expression quantitative trait loci [eQTLs]) in systemic sclerosis (SSc) and to investigate their role in the pathogenesis of the disease.
Methods: We performed an eQTL analysis using whole-blood sequencing data from 333 SSc patients and 524 controls and integrated them with SSc genome-wide association study (GWAS) data. We integrated our findings from expression modeling, differential expression analysis, and transcription factor binding site enrichment with key clinical features of SSc.
Genetic variation, gene expression and DNA methylation influence each other in a complex way. To study the impact of sequence variation and DNA methylation on gene expression, we generated genomC, a database that contains statistically significant SNP-CpG associations that are biologically classified either through co-localization with known regulatory regions (promoters and enhancers), or through known correlations with the expression levels of nearby genes. The SNP rs727563 can be used to illustrate the usefulness of this approach.
View Article and Find Full Text PDFMultisystem inflammatory syndrome in children (MIS-C) presents with fever, inflammation and multiple organ involvement in individuals under 21 years following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. To identify genes, pathways and cell types driving MIS-C, we sequenced the blood transcriptomes of MIS-C cases, pediatric cases of coronavirus disease 2019, and healthy controls. We define a MIS-C transcriptional signature partially shared with the transcriptional response to SARS-CoV-2 infection and with the signature of Kawasaki disease, a clinically similar condition.
View Article and Find Full Text PDFObjectives: The analysis of annotated transcripts from genome-wide expression studies may help to understand the pathogenesis of complex diseases, such as systemic sclerosis (SSc). We performed a whole blood (WB) transcriptome analysis on RNA collected in the context of the European PRECISESADS project, aiming at characterising the pathways that differentiate SSc from controls and that are reproducible in geographically diverse populations.
Methods: Samples from 162 patients and 252 controls were collected in RNA stabilisers.
Recent technical advances highlight that to understand mammalian development and human disease we need to consider transcriptional and epigenetic cell-to-cell differences within cell populations. This is particularly important in key areas of biomedicine like stem cell differentiation and intratumor heterogeneity. The recently developed nucleosome occupancy and methylome (NOMe) assay facilitates the simultaneous study of DNA methylation and nucleosome positioning on the same DNA strand.
View Article and Find Full Text PDF