We present a novel approach for the design of capillary-driven microfluidic networks using a machine learning genetic algorithm (ML-GA). This strategy relies on a user-friendly 1D numerical tool specifically developed to generate the necessary data to train the ML-GA. This 1D model was validated using analytical results issued from a -shaped capillary network and experimental data.
View Article and Find Full Text PDFIn this article, we consider rectangular microchannels composed of glass and thin polymeric walls with different roughness in which opposed walls are of the same material but adjacent walls are not. We propose a model for fluid capillary transport into these rectangular microchannels when horizontally positioned and focus our research on how the microchannel aspect ratio modifies the motion during the initial viscous regimes. The model relies on an effective static contact angle and an effective friction coefficient that averages local magnitudes in the cross section.
View Article and Find Full Text PDFThis work considers the two-dimensional flow field of an incompressible viscous fluid in a parallel-sided channel. In our study, one of the walls is fixed whereas the other one is elastically mounted, and sustained oscillations are induced by the fluid motion. The flow that forces the wall movement is produced as a consequence that one of the ends of the channel is pressurized, whereas the opposite end is at atmospheric pressure.
View Article and Find Full Text PDFThe current COVID-19 pandemic has led the world to an unprecedented global shortage of ventilators, and its sharing has been proposed as an alternative to meet the surge. This study outlines the performance of a preformed novel interface called 'ACRA', designed to split ventilator outflow into two breathing systems. The 'ACRA' interface was built using medical use approved components.
View Article and Find Full Text PDFIn this work a shared pressure-controlled ventilation device for two patients is considered. By the use of different valves incorporated to the circuit, the device enables the restriction of possible cross contamination and the individualization of tidal volumes, driving pressures, and positive end expiratory pressure PEEP. Possible interactions in the expiratory dynamics of different pairs of patients are evaluated in terms of the characteristic exhalatory times.
View Article and Find Full Text PDFLagrangian transport in the dynamical systems approach has so far been investigated disregarding the connection between the whole state space and the concept of observability. Key issues such as the definitions of Lagrangian and chaotic mixing are revisited under this light, establishing the importance of rewriting nonautonomous flow systems derived from a stream function in autonomous form, and of not restricting the characterization of their dynamics in subspaces. The observability of Lagrangian chaos from a reduced set of measurements is illustrated with two canonical examples: the Lorenz system derived as a low-dimensional truncation of the Rayleigh-Bénard convection equations and the driven double-gyre system introduced as a kinematic model of configurations observed in the ocean.
View Article and Find Full Text PDF