Publications by authors named "Guillermina Lopez Bendito"

The superior colliculus is a structure located in the dorsal midbrain with well conserved function and connectivity across species. Essential for survival, the superior colliculus has evolved to trigger rapid orientation and avoidance movements in response to external stimuli. The increasing recognition of the widespread connectivity of the superior colliculus, not only with brainstem and spinal cord, but also with virtually all brain structures, has rekindled the interest on this structure and revealed novel roles in the past few years.

View Article and Find Full Text PDF

Schizophrenia is associated with altered cortical circuitry. Although the schizophrenia risk gene is known to affect the wiring of inhibitory interneurons, its role in excitatory neurons and axonal development is unclear. Here, we investigated the role of Nrg1 in the development of the corpus callosum, the major interhemispheric connection formed by cortical excitatory neurons.

View Article and Find Full Text PDF

Dissecting the role of the thalamus in neuropsychiatric disorders requires new models to analyze complex genetic interactions. In this issue of Cell Stem Cell, Shin et al. use patient-derived thalamocortical organoids to investigate 22q11.

View Article and Find Full Text PDF

Calcium imaging is commonly used to visualize neural activity . In particular, mesoscale calcium imaging provides large fields of view, allowing for the simultaneous interrogation of neuron ensembles across the neuraxis. In the field of Developmental Neuroscience, mesoscopic imaging has recently yielded intriguing results that have shed new light on the ontogenesis of neural circuits from the first stages of life.

View Article and Find Full Text PDF

The thalamic nuclear complex contains excitatory projection neurons and inhibitory local neurons, the two cell types driving the main circuits in sensory nuclei. While excitatory neurons are born from progenitors that reside in the proliferative zone of the developing thalamus, inhibitory local neurons are born outside the thalamus and they migrate there during development. In addition to these cell types, which occupy most of the thalamus, there are two small thalamic regions where inhibitory neurons target extra-thalamic regions rather than neighboring neurons, the intergeniculate leaflet and the parahabenular nucleus.

View Article and Find Full Text PDF

Whereas sensory perception relies on specialized sensory pathways, it is unclear whether these pathways originate as modality-specific circuits. We demonstrated that somatosensory and visual circuits are not by default segregated but require the earliest retinal activity to do so. In the embryo, somatosensory and visual circuits are intermingled in the superior colliculus, leading to cortical multimodal responses to whisker pad stimulation.

View Article and Find Full Text PDF

Sensory processing relies on the correct development of thalamocortical loops. Visual corticothalamic axons (CTAs) invade the dorsolateral geniculate nucleus (dLGN) of the thalamus in early postnatal mice according to a regulated program that includes activity-dependent mechanisms. Spontaneous retinal activity influences the thalamic incursion of CTAs, yet the perinatal thalamus also generates intrinsic patterns of spontaneous activity whose role in modulating afferent connectivity remains unknown.

View Article and Find Full Text PDF

Unimodal sensory loss leads to structural and functional changes in both deprived and nondeprived brain circuits. This process is broadly known as cross-modal plasticity. The evidence available indicates that cross-modal changes underlie the enhanced performances of the spared sensory modalities in deprived subjects.

View Article and Find Full Text PDF

Cortical wiring relies on guidepost cells and activity-dependent processes that are thought to act sequentially. Here, we show that the construction of layer 1 (L1), a main site of top-down integration, is regulated by crosstalk between transient Cajal-Retzius cells (CRc) and spontaneous activity of the thalamus, a main driver of bottom-up information. While activity was known to regulate CRc migration and elimination, we found that prenatal spontaneous thalamic activity and NMDA receptors selectively control CRc early density, without affecting their demise.

View Article and Find Full Text PDF

Developing sensory circuits exhibit different patterns of spontaneous activity, patterns that are related to the construction and refinement of functional networks. During the development of different sensory modalities, spontaneous activity originates in the immature peripheral sensory structures and in the higher-order central structures, such as the thalamus and cortex. Certainly, the perinatal thalamus exhibits spontaneous calcium waves, a pattern of activity that is fundamental for the formation of sensory maps and for circuit plasticity.

View Article and Find Full Text PDF

Cortical interneurons born in the subpallium reach the cortex through tangential migration, whereas pyramidal cells reach their final position by radial migration. Purinergic signaling via P2Y1 receptors controls the migration of intermediate precursor cells from the ventricular zone to the subventricular zone. It was also reported that the blockade of A2A receptors (A2AR) controls the tangential migration of somatostatin+ interneurons.

View Article and Find Full Text PDF

The fasciculus retroflexus is an important fascicle that mediates reward-related behaviors and is associated with different psychiatric diseases. It is the main habenular efference and constitutes a link between forebrain regions, the midbrain, and the rostral hindbrain. The proper functional organization of habenular circuitry requires complex molecular programs to control the wiring of the habenula during development.

View Article and Find Full Text PDF
Article Synopsis
  • Neural cell diversity is crucial for the different functions of brain regions, influenced by specific gene expression in progenitors during development.
  • Researchers have discovered that both neurons and astrocytes in the neocortex and thalamus share unique transcriptional and epigenetic signatures, highlighting a commonality in their molecular programs.
  • This shared signature not only distinguishes these cells across different brain regions but also remains present even after astrocytes are reprogrammed into neurons, which could aid in developing future brain repair techniques.
View Article and Find Full Text PDF

Rapid cellular responses to environmental stimuli are fundamental for development and maturation. Immediate early genes can be transcriptionally induced within minutes in response to a variety of signals. How their induction levels are regulated and their untimely activation by spurious signals prevented during development is poorly understood.

View Article and Find Full Text PDF

The interpeduncular nucleus (IPN) is a hindbrain structure formed by three main subdivisions, the prodromal (Pro) domain located at the isthmus (Ist), and the rostral and caudal interpeduncular domains (IPR, IPC) within rhombomere 1 (r1). Various cell populations can be detected in the IPN through the expression of the , , , , and/or transcription factors. These cell populations follow independent dorsoventral tangential and radial migratory routes targeting the ventral paramedian region of Ist and r1.

View Article and Find Full Text PDF

Programmed cell death and early activity contribute to the emergence of functional cortical circuits. While most neuronal populations are scaled-down by death, some subpopulations are entirely eliminated, raising the question of the importance of such demise for cortical wiring. Here, we addressed this issue by focusing on Cajal-Retzius neurons (CRs), key players in cortical development that are eliminated in postnatal mice in part via Bax-dependent apoptosis.

View Article and Find Full Text PDF

The mammalian brain's somatosensory cortex is a topographic map of the body's sensory experience. In mice, cortical barrels reflect whisker input. We asked whether these cortical structures require sensory input to develop or are driven by intrinsic activity.

View Article and Find Full Text PDF

For the past two decades, we have advanced in our understanding of the mechanisms implicated in the formation of brain circuits. The connection between the cortex and thalamus has deserved much attention, as thalamocortical connectivity is crucial for sensory processing and motor learning. Classical dye tracing studies in wild-type and knockout mice initially helped to characterize the developmental progression of this connectivity and revealed key transcription factors involved.

View Article and Find Full Text PDF

The developmental programs that control the specification of cortical and thalamic territories are maintained largely as independent processes. However, bulk of evidence demonstrates the requirement of the reciprocal interactions between cortical and thalamic neurons as key for the correct development of functional thalamocortical circuits. This reciprocal loop of connections is essential for sensory processing as well as for the execution of complex sensory-motor tasks.

View Article and Find Full Text PDF

The development of cortical maps requires the balanced interaction between genetically determined programs and input/activity-dependent signals generated spontaneously or triggered from the environment. The somatosensory pathway of mice provides an excellent scenario to study cortical map development because of its highly organized cytoarchitecture, known as the barrel field. This precise organization makes evident even small alterations in the cortical map layout.

View Article and Find Full Text PDF

The cerebral cortex is organized into specialized sensory areas, whose initial territory is determined by intracortical molecular determinants. Yet, sensory cortical area size appears to be fine tuned during development to respond to functional adaptations. Here we demonstrate the existence of a prenatal sub-cortical mechanism that regulates the cortical areas size in mice.

View Article and Find Full Text PDF

The thalamus is a central structure of the brain, primarily recognized for the relay of incoming sensory and motor information to the cerebral cortex but also key in high order intracortical communication. It consists of glutamatergic projection neurons organized in several distinct nuclei, each having a stereotype connectivity pattern and functional roles. In the adult, these nuclei can be appreciated by architectural boundaries, although their developmental origin and specification is only recently beginning to be revealed.

View Article and Find Full Text PDF

The thalamus is a central brain structure with topographically ordered long-range axonal projections that convey sensory information to the cortex via distinct nuclei. Although there is an increasing knowledge about genes important for thalamocortical (TC) development, the identification of genetic landmarks of the distinct thalamic nuclei during the embryonic development has not been addressed systematically. Indeed, a more comprehensive understanding of how the axons from the individual nuclei find their way and connect to their corresponding cortical area is called for.

View Article and Find Full Text PDF