Ferredoxin-NADP(H) reductases (FNRs) deliver NADPH or low potential one-electron donors to redox-based metabolism in plastids and bacteria. subsp. () is a Gram-negative bacterium responsible for citrus canker disease that affects commercial citrus crops worldwide.
View Article and Find Full Text PDFFocal adhesion kinase (FAK) is a nonreceptor tyrosine kinase (NRTK) with key roles in integrating growth and cell matrix adhesion signals, and FAK is a major driver of invasion and metastasis in cancer. Cell adhesion via integrin receptors is well known to trigger FAK signaling, and many of the players involved are known; however, mechanistically, FAK activation is not understood. Here, using a multidisciplinary approach, including biochemical, biophysical, structural, computational, and cell biology approaches, we provide a detailed view of a multistep activation mechanism of FAK initiated by phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2].
View Article and Find Full Text PDFThe CYP450 from Bacillus megaterium (BmCYP106A2) catalyzes the 15beta-hydroxylation of several steroids and also synthesizes mono-hydroxylated 9alpha- and 11alpha-OH-progesterone. This study reports on the ability of BmCYP106A2 to be efficiently reduced by the photosynthetic flavodoxin and, particularly, ferredoxin electron carriers from the cyanobacterium Anabaena. These results open the possibility for the design of a hybrid system to provide reducing equivalents for the hydroxylation process.
View Article and Find Full Text PDFUnder iron-deficient conditions Flavodoxin (Fld) replaces Ferredoxin in Anabaena as electron carrier from Photosystem I (PSI) to Ferredoxin-NADP(+) reductase (FNR). Several residues modulate the Fld interaction with FNR and PSI, but no one appears as specifically critical for efficient electron transfer (ET). Fld shows a strong dipole moment, with its negative end directed towards the flavin ring.
View Article and Find Full Text PDFFerredoxin-NADP(H) reductases catalyse the reversible hydride/electron exchange between NADP(H) and ferredoxin/flavodoxin, comprising a structurally defined family of flavoenzymes with two distinct subclasses. Those present in Gram-negative bacteria (FPRs) display turnover numbers of 1-5 s(-1) while the homologues of cyanobacteria and plants (FNRs) developed a 100-fold activity increase. We investigated nucleotide interactions and hydride transfer in Rhodobacter capsulatus FPR comparing them to those reported for FNRs.
View Article and Find Full Text PDFThree surface hydrophobic residues located at the Anabaena flavodoxin (Fld) putative complex interface with its redox partners were replaced by site-directed mutagenesis. The effects of these replacements on Fld interaction with both its physiological electron donor, photosystem I (PSI), and its electron acceptor, ferredoxin-NADP+ reductase (FNR), were analyzed. Trp57, Ile59, and Ile92 contributed to the optimal orientation and tightening of the FNR:Fld and PSI:Fld complexes.
View Article and Find Full Text PDFContribution of three regions (phosphate-binding, 50's and 90's loops) of Anabaena apoflavodoxin to FMN binding and reduction potential was studied. Thr12 and Glu16 did not influence FMN redox properties, but Thr12 played a role in FMN binding. Replacement of Trp57 with Glu, Lys or Arg moderately shifted E(ox/sq) and E(sq/hq) and altered the energetic of the FMN redox states binding profile.
View Article and Find Full Text PDFIntramolecular interaction networks in proteins are responsible for heterotropic ligand binding cooperativity, a biologically important, widespread phenomenon in nature (e.g., signaling transduction cascades, enzymatic cofactors, enzymatic allosteric activators or inhibitors, gene transcription, or repression).
View Article and Find Full Text PDF