Publications by authors named "Guillebault D"

Monitoring drinking water quality is an important public health issue and pathogenic organisms present a particularly serious health hazard in freshwater bodies. However, many pathogenic bacteria, including cyanobacteria, and pathogenic protozoa can be swept into coastal lagoons and into near-shore marine environments where they continue to grow and pose a health threat to marine mammals and invertebrates. In this study, we tested the suitability of a phylochip (microarray for species detection) developed for freshwater pathogenic organisms to be applied to samples taken across a marine/freshwater interface at monthly intervals for two years.

View Article and Find Full Text PDF

The study region in Sagres, SW Portugal, is subject to natural eutrophication of coastal waters by wind-driven upwelling, which stimulates high primary productivity facilitating the recent economic expansion of bivalve aquaculture in the region. However, this economic activity is threatened by harmful algal blooms (HAB) caused by the diatoms Pseudo-nitzschia spp., Dinophysis spp.

View Article and Find Full Text PDF

Harmful cyanobacterial blooms are a major threat to water quality and human health. Adequate risk assessment is thus required, which relies strongly on comprehensive monitoring. Here, we tested novel multi-probe RNA chips developed in the European project, μAqua, to determine the abundance of harmful cyanobacterial species and expression of selected toxin genes in six Dutch lakes.

View Article and Find Full Text PDF

Monitoring drinking water quality is an important public health issue. Two objectives from the 4 years, six nations, EU Project μAqua were to develop hierarchically specific probes to detect and quantify pathogens in drinking water using a PCR-free microarray platform and to design a standardised water sampling program from different sources in Europe to obtain sufficient material for downstream analysis. Our phylochip contains barcodes (probes) that specifically identify freshwater pathogens that are human health risks in a taxonomic hierarchical fashion such that if species is present, the entire taxonomic hierarchy (genus, family, order, phylum, kingdom) leading to it must also be present, which avoids false positives.

View Article and Find Full Text PDF

Over the past few decades, there has been an increased frequency and duration of cyanobacterial Harmful Algal Blooms (HABs) in freshwater systems globally. These can produce secondary metabolites called cyanotoxins, many of which are hepatotoxins, raising concerns about repeated exposure through ingestion of contaminated drinking water or food or through recreational activities such as bathing/swimming. An ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) multi-toxin method has been developed and validated for freshwater cyanotoxins; microcystins-LR, -YR, -RR, -LA, -LY and -LF, nodularin, cylindrospermopsin, anatoxin-a and the marine diatom toxin domoic acid.

View Article and Find Full Text PDF

Monitoring the quality of drinking water is an important issue for public health. Two of the main objectives of the European Project μAQUA were (i) the development of specific probes to detect and quantify pathogens in drinking water and (ii) the design of standardized sampling programs of water from different sources in Europe in order to obtain sufficient material for downstream analysis. Our phylochip contains barcodes that specifically identify freshwater pathogens for enabling the detection of organisms that can be risks for human health.

View Article and Find Full Text PDF

Harmful algal blooms (HABs) are becoming more frequent as climate changes, with tropical species moving northward. Monitoring programs detecting the presence of toxic algae before they bloom are of paramount importance to protect aquatic ecosystems, aquaculture, human health and local economies. Rapid and reliable species identification methods using molecular barcodes coupled to biosensor detection tools have received increasing attention over the past decade as an alternative to the impractical standard microscopic counting-based techniques.

View Article and Find Full Text PDF

Monitoring the quality of freshwater is an important issue for public health. In the context of the European project μAqua, 150 samples were collected from several waters in France, Germany, Ireland, Italy, and Turkey for 2 yr. These samples were analyzed using 2 multitoxin detection methods previously developed: a microsphere-based method coupled to flow-cytometry, and an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method.

View Article and Find Full Text PDF

Tropical shrimp aquaculture systems in New Caledonia regularly face major crises resulting from outbreaks of Vibrio infections. Ponds are highly dynamic and challenging environments and display a wide range of trophic conditions. In farms affected by vibriosis, phytoplankton biomass and composition are highly variable.

View Article and Find Full Text PDF

The transmission of water-borne pathogens typically occurs by a faecal-oral route, through inhalation of aerosols, or by direct or indirect contact with contaminated water. Previous molecular-based studies have identified viral particles of zoonotic and human nature in surface waters. Contaminated water can lead to human health issues, and the development of rapid methods for the detection of pathogenic microorganisms is a valuable tool for the prevention of their spread.

View Article and Find Full Text PDF

Current knowledge about the spread of pathogens in aquatic environments is scarce probably because bacteria, viruses, algae and their toxins tend to occur at low concentrations in water, making them very difficult to measure directly. The purpose of this study was the development and validation of tools to detect pathogens in freshwater systems close to an urban area. In order to evaluate anthropogenic impacts on water microbiological quality, a phylogenetic microarray was developed in the context of the EU project µAQUA to detect simultaneously numerous pathogens and applied to samples from two different locations close to an urban area located upstream and downstream of Rome in the Tiber River.

View Article and Find Full Text PDF

Fixed cells with different nucleic acid contents and scatter properties (low nucleic acid [LNA], high nucleic acid 1 [HNA1], and HNA2) were sorted by flow cytometry (FCM). For each sort, 10,000 cells were efficiently captured on poly-l-lysine-coated microplates, resulting in efficient and reproducible PCR amplification.

View Article and Find Full Text PDF

Superoxide dismutases (SODs) are a family of antioxidant enzymes that catalyse the degradation of toxic superoxide radicals in obligate and facultative aerobic organisms. Here, we report the presence of a multi-copy gene family encoding SODs in the heterotrophic dinoflagellate Crypthecodinium cohnii. All the genes identified (sod1 to sod17) have been cloned and sequenced, and shown to encode potentially functional dimeric iron-containing SOD isozymes.

View Article and Find Full Text PDF

Df31 is a small hydrophilic protein from Drosophila melanogaster that can act as a histone chaperone in vitro. The protein is also detected as an integral component of chromatin, present at approximately the same level as histone H1. We have developed a simple assay to measure protein binding to oligonucleosomes and used it to characterise the DF31-oligonucleosome interaction.

View Article and Find Full Text PDF

Dinoflagellates are marine unicellular eukaryotes that exhibit unique features including a very low level of basic proteins bound to the chromatin and the complete absence of histones and nucleosomal structure. A cDNA encoding a protein with a strong homology to the TATA box-binding proteins (TBP) has been isolated from an expressed sequence tag library of the dinoflagellate Crypthecodinium cohnii. The typical TBP repeat signature and the amino acid motives involved in TFIIA and TFIIB interactions were conserved in this new TBP-like protein.

View Article and Find Full Text PDF

Dinoflagellates are unique among eukaryotes in their lack of histones and nucleosomes, and permanently condensed chromosomes. These unusual features raise questions as how chromatin condensation and gene expression are achieved. In this study, we investigated nuclear proteins potentially implicated in the regulation of the transcription.

View Article and Find Full Text PDF

The morphology and behaviour of the chromosomes of dinoflagellates during the cell cycle appear to be unique among eukaryotes. We used synchronized and aphidicolin-blocked cultures of the dinoflagellate Crypthecodinium cohnii to describe the successive morphological changes that chromosomes undergo during the cell cycle. The chromosomes in early G(1) phase appeared to be loosely condensed with numerous structures protruding toward the nucleoplasm.

View Article and Find Full Text PDF