Sci Total Environ
September 2022
Coastal eutrophication is a major issue worldwide, also affecting the Baltic Sea and its coastal waters. Effective management responses to coastal eutrophication require good understanding of the interacting coastal pressures from land, the open sea, and the atmosphere, and associated coastal ecosystem impacts. In this study, we investigate how research on Baltic coastal eutrophication has handled these interactions so far and what key research gaps still remain.
View Article and Find Full Text PDFCoastal eutrophication is a major environmental issue worldwide. In the Baltic Sea, eutrophication affects both the coastal waters and the open sea. Various policy frameworks aim to hinder its progress but eutrophication-relevant water quality variables, such as chlorophyll-a concentrations, still exhibit opposite temporal trends in various Baltic Sea marine and coastal waters.
View Article and Find Full Text PDFInt J Environ Res Public Health
September 2020
Hydroclimatic change may affect the range of some infectious diseases, including tularemia. Previous studies have investigated associations between tularemia incidence and climate variables, with some also establishing quantitative statistical disease models based on historical data, but studies considering future climate projections are scarce. This study has used and combined hydro-climatic projection outputs from multiple global climate models (GCMs) in phase six of the Coupled Model Intercomparison Project (CMIP6), and site-specific, parameterized statistical tularemia models, which all imply some type of power-law scaling with preceding-year tularemia cases, to assess possible future trends in disease outbreaks for six counties across Sweden, known to include tularemia high-risk areas.
View Article and Find Full Text PDF