The Global Modeling and Assimilation Office (GMAO) has recently released a new version of the Goddard Earth Observing System (GEOS) Sub-seasonal to Seasonal prediction (S2S) system, GEOS-S2S-2, that represents a substantial improvement in performance and infrastructure over the previous system. The system is described here in detail, and results are presented from forecasts, climate equillibrium simulations and data assimilation experiments. The climate or equillibrium state of the atmosphere and ocean showed a substantial reduction in bias relative to GEOS-S2S-1.
View Article and Find Full Text PDFThe 2015/2016 El Niño is analyzed using atmospheric/oceanic analysis produced using the Goddard Earth Observing System (GEOS) data assimilation systems. As well as describing the structure of the event, a theme of the work is to compare and contrast it with two other strong El Niños, in 1982/1983 and 1997/1998. These three El Niño events are included in the Modern-Era Retrospective analysis for Research and Applications (MERRA) and in the more recent MERRA-2 reanalyses.
View Article and Find Full Text PDFA numerical model based on one-dimensional balance laws and ad hoc zero-dimensional boundary conditions is tested against experimental data. The study concentrates on the circle of Willis, a vital subnetwork of the cerebral vasculature. The main goal is to obtain efficient and reliable numerical tools with predictive capabilities.
View Article and Find Full Text PDF