We report the observation of the parametric gain band distortion in the nonlinear (depleted) regime of modulation instability in dispersion oscillating fibers. We show that the maximum gain is shifted even outside the boundaries of the linear parametric gain band. Experimental observations are confirmed by numerical simulations.
View Article and Find Full Text PDFWe report an experimental study on the backward-pumped Raman amplification of short pulses into a 20.3 km long optical fiber. We demonstrate that the gain and the pump saturation depend on the pulse duration.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2021
The classical theory of modulation instability (MI) attributed to Bespalov-Talanov in optics and Benjamin-Feir for water waves is just a linear approximation of nonlinear effects and has limitations that have been corrected using the exact weakly nonlinear theory of wave propagation. We report results of experiments in both optics and hydrodynamics, which are in excellent agreement with nonlinear theory. These observations clearly demonstrate that MI has a wider band of unstable frequencies than predicted by the linear stability analysis.
View Article and Find Full Text PDFWe report the experimental observation of more than four Fermi-Pasta-Ulam-Tsingou recurrences in an optical fiber thanks to an ultra-low loss optical fiber and to an active loss compensation system. We observe both regular (in-phase) and symmetry-broken (phase-shifted) recurrences, triggered by the input phase. Experimental results are confirmed by numerical simulations.
View Article and Find Full Text PDFWe report the first, to the best of our knowledge, experimental observation of doubly periodic first-order solutions of the nonlinear Schrödinger equation in optical fibers. We confirm, experimentally, the existence of -type and -type solutions. This is done by using the initial conditions that consist of a strong pump and two weak sidebands.
View Article and Find Full Text PDF