Publications by authors named "Guillaume Vandal"

The Cut homeobox 1 (CUX1) gene is a target of loss-of-heterozygosity in many cancers, yet elevated CUX1 expression is frequently observed and is associated with shorter disease-free survival. The dual role of CUX1 in cancer is illustrated by the fact that most cell lines with CUX1 LOH display amplification of the remaining allele, suggesting that decreased CUX1 expression facilitates tumor development while increased CUX1 expression is needed in tumorigenic cells. Indeed, CUX1 was found in a genome-wide RNAi screen to identify synthetic lethal interactions with oncogenic RAS.

View Article and Find Full Text PDF

Lung cancer is currently the most deadly malignancy in industrialized countries and accounts for 18% of all cancer-related deaths worldwide. Over 70% of patients with non-small cell lung cancer (NSCLC) are diagnosed at a late stage, with a 5-year survival below 10%. KRAS and the EGFR are frequently mutated in NSCLC and while targeted therapies for patients with EGFR mutations exist, oncogenic KRAS is thus far not druggable.

View Article and Find Full Text PDF

The ability to express exogenous cDNAs while suppressing endogenous genes via RNAi represents an extremely powerful research tool with the most efficient non-transient approach being accomplished through stable viral vector integration. Unfortunately, since traditional restriction enzyme based methods for constructing such vectors are sequence dependent, their construction is often difficult and not amenable to mass production. Here we describe a non-sequence dependent Gateway recombination cloning system for the rapid production of novel lentiviral (pLEG) and retroviral (pREG) vectors.

View Article and Find Full Text PDF

β-catenin plays a dual role both as a key effector in the regulation of adherens junctions and as a transcriptional coactivator. Tyrosine phosphorylation of β-catenin is implicated as a means for its release from E-cadherin complexes and correlates with enhanced transcriptional activity. However, it remains unclear whether or not tyrosine phosphorylated β-catenin degrades slower or faster than its unphosphorylated form or transactivates the downstream target genes differently.

View Article and Find Full Text PDF

Matriptase is a member of the novel family of type II transmembrane serine proteases. It was recently shown that a rare genetic disorder, autosomal recessive ichthyosis with hypotrichosis, is caused by a mutation in the coding region of matriptase. However, the biochemical and functional consequences of the G827R mutation in the catalytic domain of the enzyme have not been reported.

View Article and Find Full Text PDF