J Chromatogr B Analyt Technol Biomed Life Sci
March 2024
Antibody drug conjugates (ADCs) are an increasingly important therapeutic class of molecules for the treatment of cancer. Average drug-to-antibody ratio (DAR) and drug-load distribution are critical quality attributes of ADCs with the potential to impact efficacy and toxicity of the molecule and need to be analytically characterized and understood. Several platform methods including hydrophobic interaction chromatography (HIC) and native size-exclusion chromatography-mass spectrometry (nSEC-MS) have been developed for that purpose; however, each presents some limitations.
View Article and Find Full Text PDFIn the context of direct top-down analysis or concerted bottom-up characterization of nucleic acid samples, the waning yield of terminal fragments as a function of precursor ion size poses a significant challenge to the gas-phase sequencing of progressively larger oligonucleotides. In this report, we examined the behavior of oligoribonucleotide samples ranging from 20 to 364 nt upon collision-induced dissociation (CID). The experimental data showed a progressive shift from terminal to internal fragments as a function of size.
View Article and Find Full Text PDFThe mechanism of resistance in carbapenem-resistant Enterobacteriaceae (CRE) has therapeutic implications. We comprehensively characterized emerging mechanisms of resistance in CRE between 2013 and 2016 at a health system in Northern California. A total of 38.
View Article and Find Full Text PDFHuman antibodies of the IgG2 subclass exhibit complex inter-chain disulfide bonding patterns that result in three structures, namely A, A/B, and B. In therapeutic applications, the distribution of disulfide isoforms is a critical product quality attribute because each configuration affects higher order structure, stability, isoelectric point, and antigen binding. The current standard for quantification of IgG2 disulfide isoform distribution is based on chromatographic or electrophoretic techniques that require additional characterization using mass spectrometry (MS)-based methods to confirm disulfide linkages.
View Article and Find Full Text PDFSize exclusion chromatography (SEC) is widely used in the characterization and quality control of therapeutic proteins to detect aggregates. Aggregation is a carefully monitored quality attribute from the earliest stages of clinical development owing to the possibility of eliciting an immunogenic response in the patient. During early stage molecule assessment for cell culture production, small-scale screening experiments are performed to permit rapid turn-around of results so as to not delay timelines.
View Article and Find Full Text PDFRecombinant monoclonal antibodies (MAbs) have become one of the most rapidly growing classes of biotherapeutics in the treatment of human disease. MAbs are highly heterogeneous proteins, thereby requiring a battery of analytical technologies for their characterization. However, incompatibility between separation and subsequent detection is often encountered.
View Article and Find Full Text PDFSize exclusion chromatography is a widely performed analysis of monoclonal antibodies, primarily used to monitor the levels of higher weight molecular species such as aggregates. Owing to the subtleties of these separation mechanisms and frequently observed partial resolutions of components in these separations, many common methods for increasing the method throughput are not practical as they trade off resolution for speed. Short columns, high flow rates and smaller particles are examples of these approaches.
View Article and Find Full Text PDF