Selection within natural communities has mainly been studied along large abiotic gradients, while the selection of individuals within populations should occur locally in response to biotic filters. To better leverage the role of the latter, we considered the hierarchal nature of environmental selection for the multiple dimensions of the trait space across biological levels, that is, from the species to the community and the ecosystem levels. We replicated a natural species richness gradient where communities included from two to 16 species within four wetlands (bog, fen, meadow, and marsh) contrasting in plant productivity.
View Article and Find Full Text PDFThe alteration of environmental conditions has two major outcomes on the demographics of living organisms: population decline of the common species and extinction of the rarest ones. Halting the decline of abundant species as well as the erosion of biodiversity require solutions that may be mismatched, despite being rooted in similar causes. In this study, we demonstrate how rank abundance distribution (RAD) models are mathematical representations of a dominance-diversity dilemma.
View Article and Find Full Text PDFBackground: The functioning of ecosystems is highly variable through space and time. Climatic and edaphic factors are forcing ecological communities to converge, whereas the diversity of plant assemblages dampens these effects by allowing communities' dynamics to diverge. This study evaluated whether the growing season phenology of wetland plant communities within landscapes is determined by the climatic/edaphic factors of contrasted regions, by the species richness of plant communities, or by the diversity of plant assemblages.
View Article and Find Full Text PDFAboveground production in terrestrial plant communities is commonly expressed in amount of carbon, or biomass, per unit surface. Alternatively, expressing production per unit volume allows the comparison of communities by their fundamental capacities in packing carbon. In this work we reanalyzed published data from more than 900 plant communities across nine ecosystems to show that standing dry biomass per unit volume (biomass packing) consistently averages around 1 kg/m(3) and rarely exceeds 5 kg/m(3) across ecosystem types.
View Article and Find Full Text PDF