This work explores the generation of James Webb Space Telescope (JWSP) imagery via image-to-image translation from the available Hubble Space Telescope (HST) data. Comparative analysis encompasses the Pix2Pix, CycleGAN, TURBO, and DDPM-based Palette methodologies, assessing the criticality of image registration in astronomy. While the focus of this study is not on the scientific evaluation of model fairness, we note that the techniques employed may bear some limitations and the translated images could include elements that are not present in actual astronomical phenomena.
View Article and Find Full Text PDFWe present a novel information-theoretic framework, termed as TURBO, designed to systematically analyse and generalise auto-encoding methods. We start by examining the principles of information bottleneck and bottleneck-based networks in the auto-encoding setting and identifying their inherent limitations, which become more prominent for data with multiple relevant, physics-related representations. The TURBO framework is then introduced, providing a comprehensive derivation of its core concept consisting of the maximisation of mutual information between various data representations expressed in two directions reflecting the information flows.
View Article and Find Full Text PDF