We report the synthesis of biocompatible perfluorinated micelles designed to improve radiotherapeutic efficacy in a radioresistant tumor environment. In vitro and in vivo behaviors of perfluorinated micelles were assessed at both cellular and tissular levels. The micellar platform offers key advantages as theranostic tool: (i) small size, allowing deep tissue penetration; (ii) oxygen transport to hypoxic tissues; (iii) negligible toxicity in the absence of ionizing radiation; (iv) internalization into cancer cells; (v) potent radiosensitizing effect; and (vi) excellent tumor-targeting properties, as monitored by positron emission tomography.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2024
We report the design, synthesis, and evaluation of stimuli-responsive nanoscale micelles that can be activated by light to induce a cytotoxic effect. Micelles were assembled from amphiphilic units made of a photoactivatable ferrocenyl linker, connected on one side to a lipophilic chain, and on the other side to a hydrophilic pegylated chain. experiments indicated that pristine micelles ("off" state) were nontoxic to MCF-7 cancer cells, even at high concentrations, but became potent upon photoactivation ("on" state).
View Article and Find Full Text PDFBackground: Pharmacological synergisms are an attractive anticancer strategy. However, with more than 5000 approved-drugs and compounds in clinical development, identifying synergistic treatments represents a major challenge.
Methods: High-throughput screening was combined with target deconvolution and functional genomics to reveal targetable vulnerabilities in glioblastoma.
One of the most abundant DNA lesions induced by Reactive oxygen species (ROS) is 8-oxoG, a highly mutagenic lesion that compromises genetic instability when not efficiently repaired. 8-oxoG is specifically recognized by the DNA-glycosylase OGG1 that excises the base and initiates the Base Excision Repair pathway (BER). Furthermore, OGG1 has not only a major role in DNA repair but it is also involved in transcriptional regulation.
View Article and Find Full Text PDFTumor heterogeneity represents a major hurdle for therapy. This cellular heterogeneity is mainly sustained by different subpopulations of tumorigenic cells, the so-called cancer stem cells (CSCs). CSCs burden is associated with disease progression and patient poor prognosis.
View Article and Find Full Text PDFThe expression of BRAF-V600E triggers oncogene-induced senescence in normal cells and is implicated in the development of several cancers including melanoma. Here, we report that cardioglycosides such as ouabain are potent senolytics in BRAF senescence. Sensitization by ATP1A1 knockdown and protection by supplemental potassium showed that senolysis by ouabain was mediated by the Na,K-ATPase pump.
View Article and Find Full Text PDFSequence-specific oligomers with predictable folding patterns, i.e., foldamers, provide new opportunities to mimic α-helical peptides and design inhibitors of protein-protein interactions.
View Article and Find Full Text PDFWe describe herein the assembly and in vivo evaluation of a tailor-made micellar carrier system designed for the optimized encapsulation of a superfluorinated MRI probe and further targeting of solid tumors. The in vivo validation was carried out on MC38 tumor-bearing mice which allowed the confirmation of the efficient targeting properties of the nano-carrier, as monitored by 19F-MRI.
View Article and Find Full Text PDFEscape from cell death is a key event in cancer establishment/progression. While apoptosis is often considered as the main cell death pathway, upon caspase inhibition, cell death is rather delayed than blocked leading to caspase-independent cell death (CICD). Although described for years, CICD's underlying mechanism remains to be identified.
View Article and Find Full Text PDFTWIST1 is a basic helix-loop-helix transcription factor, and one of the master Epithelial-to-Mesenchymal Transition (EMT) regulators. We show that tumor suppressor miR-145-5p controls TWIST1 expression in an immortalized prostate epithelial cell line and in a tumorigenic prostate cancer-derived cell line. Indeed, shRNA-mediated miR-145-5p silencing enhanced TWIST1 expression and induced EMT-associated malignant properties in these cells.
View Article and Find Full Text PDFBackground: Functional genomics employs several experimental approaches to investigate gene functions. High-throughput techniques, such as loss-of-function screening and transcriptome profiling, allow to identify lists of genes potentially involved in biological processes of interest (so called hit list). Several computational methods exist to analyze and interpret such lists, the most widespread of which aim either at investigating of significantly enriched biological processes, or at extracting significantly represented subnetworks.
View Article and Find Full Text PDFOne of the most abundant DNA lesions induced by oxidative stress is the highly mutagenic 8-oxoguanine (8-oxoG), which is specifically recognized by 8-oxoguanine DNA glycosylase 1 (OGG1) to initiate its repair. How DNA glycosylases find small non-helix-distorting DNA lesions amongst millions of bases packaged in the chromatin-based architecture of the genome remains an open question. Here, we used a high-throughput siRNA screening to identify factors involved in the recognition of 8-oxoG by OGG1.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are small non-coding RNAs that are involved in the regulation of major pathways in eukaryotic cells through their binding to and repression of multiple mRNAs. With high-throughput methodologies, various outcomes can be measured that produce long lists of miRNAs that are often difficult to interpret. A common question is: after differential expression or phenotypic screening of miRNA mimics, which miRNA should be chosen for further investigation? Here, we present miRViz (http://mirviz.
View Article and Find Full Text PDFCancer Stem Cells (CSC), a subset of cancer cells resembling normal stem cells with self-renewal and asymmetric division capabilities, are present at various but low proportions in many tumors and are thought to be responsible for tumor relapses following conventional cancer therapies. In vitro, most intriguingly, isolated CSCs rapidly regenerate the original population of stem and non-stem cells (non-CSCs) as shown by various investigators. This phenomenon still remains to be explained.
View Article and Find Full Text PDFPolydiacetylene micelles were assembled from four different cationic amphiphiles and photopolymerized to reinforce their architecture. The produced micelles were systematically investigated, in interaction with siRNAs, for intracellular delivery of the silencing nucleic acids. The performances of the carrier systems were rationalized based on the cell penetrating properties of the micelles and the nature of their cationic complexing group, responsible for efficient siRNA binding and further endosomal escape.
View Article and Find Full Text PDFAnti-silencing function 1 (ASF1) is a conserved H3-H4 histone chaperone involved in histone dynamics during replication, transcription, and DNA repair. Overexpressed in proliferating tissues including many tumors, ASF1 has emerged as a promising therapeutic target. Here, we combine structural, computational, and biochemical approaches to design peptides that inhibit the ASF1-histone interaction.
View Article and Find Full Text PDFTherapeutic resistance is a major clinical challenge in oncology. Evidence identifies cancer stem cells (CSCs) as a driver of tumor evolution. Accordingly, the key stemness property unique to CSCs may represent a reservoir of therapeutic target to improve cancer treatment.
View Article and Find Full Text PDFExpression of hyperactive RAF kinases, such as the oncogenic B-RAF-V600E mutant, in normal human cells triggers a proliferative arrest that blocks tumor formation. We discovered that glucocorticoids delayed the entry into senescence induced by B-RAF-V600E in human fibroblasts, and allowed senescence bypass when the cells were regularly passaged, but that they did not allow proliferation of cells that were already senescent. Transcriptome and siRNA analyses revealed that the EGR1 gene is one target of glucocorticoid action.
View Article and Find Full Text PDFPolydiacetylene micelles were functionalized with controlled amounts of biotin using bioorthogonal click chemistry. The biotinylated micelles were evaluated in the selective targeting of the MCF-7 cancerous cell line and were shown to be readily internalized. The efficiency of the cellular uptake was correlated to the density of grafted biotin.
View Article and Find Full Text PDFMotivation: Incorporating gene interaction data into the identification of 'hit' genes in genomic experiments is a well-established approach leveraging the 'guilt by association' assumption to obtain a network based hit list of functionally related genes. We aim to develop a method to allow for multivariate gene scores and multiple hit labels in order to extend the analysis of genomic screening data within such an approach.
Results: We propose a Markov random field-based method to achieve our aim and show that the particular advantages of our method compared with those currently used lead to new insights in previously analysed data as well as for our own motivating data.
Breast cancer stem cells (bCSCs) have been implicated in tumor progression and therapeutic resistance; however, the molecular mechanisms that define this state are unclear. We have performed two microRNA (miRNA) gain- and loss-of-function screens to identify miRNAs that regulate the choice between bCSC self-renewal and differentiation. We find that micro-RNA (miR)-600 silencing results in bCSC expansion, while its overexpression reduces bCSC self-renewal, leading to decreased in vivo tumorigenicity.
View Article and Find Full Text PDFIGF-2 mRNA binding protein 3 (IGF2BP3, IMP-3) is a well-known post-transcriptional regulatory factor of gene expression, mainly involved in embryonic development and oncogenesis. We have previously demonstrated that a subset of IMP-3 targets, such as the mRNAs of cyclins D1, D3 and G1, are positively regulated by IMP-3, and that this regulation depends on nuclear localization of IMP-3. In the present study, we show that as a first step following a knock-down of IMP-3, the protein levels of the cyclins rapidly decrease, while their mRNAs remain stable and associated with the polyribosomes, though not translated.
View Article and Find Full Text PDFThe cytoplasmic element binding protein 1 (CPEB1) regulates many important biological processes ranging from cell cycle control to learning and memory formation, by controlling mRNA translation efficiency via 3' untranslated regions (3'UTR). In the present study, we show that CPEB1 is significantly downregulated in human Glioblastoma Multiforme (GBM) tissues and that the restoration of its expression impairs glioma cell lines growth. We demonstrate that CPEB1 promotes the expression of the cell cycle inhibitor p27(Kip1) by specifically targeting its 3'UTR, and competes with miR-221/222 binding at an overlapping site in the 3'UTR, thus impairing miR-221/222 inhibitory activity.
View Article and Find Full Text PDF