Publications by authors named "Guillaume Penelet"

Phase-shifting interferometry is one of the optical measurement techniques that improves accuracy and resolution by incorporating a controlled phase shift into conventional optical interferometry. In this study, a four-step phase-shifting interferometer is developed to measure the spatiotemporal distribution of acoustic density oscillations of the gas next to a rigid plate. The experimental apparatus consists of a polarizing Mach-Zehnder interferometer with a polarization camera capable of capturing four polarization directions in one shot image and it is used to measure the magnitude and the phase of density fluctuations through a duct of rectangular cross section connected to a loudspeaker.

View Article and Find Full Text PDF

The absorption of airborne sound is still a subject of active research, and even more since the emergence of acoustic metamaterials. Although being subwavelength, the screen barriers developed so far cannot absorb more than 50% of an incident wave at very low frequencies (<100 Hz). Here, we explore the design of a subwavelength and broadband absorbing screen based on thermoacoustic energy conversion.

View Article and Find Full Text PDF

The design of thermoacoustic coolers involves an adequate modeling of the thermoacoustic core's performance, which requires, in particular, a precise knowledge of their thermo-physical properties. Materials such as wire mesh stacks, foams, or compressed fibrous media are hard to describe, and their thermo-physical properties are rarely well enough quantified. Moreover, the classical linear thermoacoustic theory is not sufficient to accurately describe the performance of these materials.

View Article and Find Full Text PDF

This paper deals with the experimental study of an acoustic Parity-Time (PT) symmetric system based on the thermoacoustic amplification process. Such a system is presented and consists of two acoustic units connected through side branches to a waveguide. One unit contains a thermoacoustic core that provides an acoustic gain which balances the thermal and viscous losses taking place in the second unit.

View Article and Find Full Text PDF

This paper deals with the theoretical description of self-sustained oscillations resulting from the coupling of a piston-crank-flywheel assembly with a thermoacoustic-Stirling prime mover. The governing equations of the piston-flywheel motion are coupled to those of the thermoacoustic system, which is described in the time domain through a rational differential operator relating acoustic pressure fluctuations inside the cavity to the piston's velocity. As a result, the complete device is described by means of a fourth-order nonlinear dynamical system and solved numerically.

View Article and Find Full Text PDF

This paper discusses noise and bias in the method of holographic interferometry applied to the study of acoustics phenomena. The influence of noise on the measurement of acoustic pressure is described by an analytical approach. Relationships to quantify the minimum measurable fluid density and acoustic pressure are given by taking into account the experimental parameters of the setup.

View Article and Find Full Text PDF

A thin nichrome wire driven near resonance by the Lorentz force and heated by an alternating electrical current is a popular lecture demonstration. Due to the convective cooling of the portions of the wire moving with the greatest amplitude, only glowing regions near a velocity node will be visible in a darkened room. Nonlinear effects and the thermal expansion coefficient of the wire displace the wire's tensioning mass.

View Article and Find Full Text PDF

The successful design of a thermoacoustic engine depends on the appropriate description of the processes involved inside the thermoacoustic core (TAC). This is a difficult task when considering the complexity of both the heat transfer phenomena and the geometry of the porous material wherein the thermoacoustic amplification process occurs. An attempt to getting round this difficulty consists in measuring the TAC transfer matrix under various heating conditions, the measured transfer matrices being exploited afterward into analytical models describing the complete apparatus.

View Article and Find Full Text PDF

The aim of this paper is to propose a method to predict the onset conditions of the thermoacoustic instability for various thermoacoustic engines. As an accurate modeling of the heat exchangers and the stack submitted to a temperature gradient is a difficult task, an experimental approach for the characterization of the amplifying properties of the thermoacoustic core is proposed. An experimental apparatus is presented which allows to measure the transfer matrix of a thermoacoustic core under various heating conditions by means of a four-microphone method.

View Article and Find Full Text PDF

This paper deals with the measurement of acoustic particle velocity and acoustic streaming velocity in a closed-loop waveguide in which a resonant traveling acoustic wave is sustained by two loudspeakers appropriately controlled in phase and amplitude. An analytical model of the acoustic field and a theoretical estimate of the acoustic streaming are presented. The measurement of acoustic and acoustic streaming velocities is performed using laser Doppler velocimetry.

View Article and Find Full Text PDF