The genome of the hemibiotrophic anthracnose fungus, , encodes a large inventory of putative secreted effector proteins that are sequentially expressed at different stages of plant infection, namely appressorium-mediated penetration, biotrophy and necrotrophy. However, the destinations to which these proteins are addressed inside plant cells are unknown. In the present study, we selected 61 putative effector genes that are highly induced in appressoria and/or biotrophic hyphae.
View Article and Find Full Text PDFBackground: The ascomycete fungus Colletotrichum higginsianum causes anthracnose disease of brassica crops and the model plant Arabidopsis thaliana. Previous versions of the genome sequence were highly fragmented, causing errors in the prediction of protein-coding genes and preventing the analysis of repetitive sequences and genome architecture.
Results: Here, we re-sequenced the genome using single-molecule real-time (SMRT) sequencing technology and, in combination with optical map data, this provided a gapless assembly of all twelve chromosomes except for the ribosomal DNA repeat cluster on chromosome 7.
The genome of the hemibiotrophic anthracnose fungus, Colletotrichum higginsianum, encodes a large repertoire of candidate-secreted effectors containing LysM domains, but the role of such proteins in the pathogenicity of any Colletotrichum species is unknown. Here, we characterized the function of two effectors, ChELP1 and ChELP2, which are transcriptionally activated during the initial intracellular biotrophic phase of infection. Using immunocytochemistry, we found that ChELP2 is concentrated on the surface of bulbous biotrophic hyphae at the interface with living host cells but is absent from filamentous necrotrophic hyphae.
View Article and Find Full Text PDFUnlabelled: The cucumber anthracnose fungus Colletotrichum orbiculare forms specialized cells called appressoria for host penetration. We identified a gene, FAM1, encoding a novel peroxin protein that is essential for peroxisome biogenesis and that associates with Woronin bodies (WBs), dense-core vesicles found only in filamentous ascomycete fungi which function to maintain cellular integrity. The fam1 disrupted mutants were unable to grow on medium containing oleic acids as the sole carbon source and were nonpathogenic, being defective in both appressorium melanization and host penetration.
View Article and Find Full Text PDFNonrace specific disease resistance 1 (NDR1) is a conserved downstream regulator of resistance (R) protein-derived signaling. We identified two NDR1-like sequences (GmNDR1a, b) from soybean, and investigated their roles in R-mediated resistance and pathogen effector detection. Silencing GmNDR1a and b in soybean shows that these genes are required for resistance derived from the Rpg1-b, Rpg3, and Rpg4 loci, against Pseudomonas syringae (Psg) expressing avrB, avrB2 and avrD1, respectively.
View Article and Find Full Text PDFBackground: Various bacteria can use non-ribosomal peptide synthesis (NRPS) to produce peptides or other small molecules. Conserved features within the NRPS machinery allow the type, and sometimes even the structure, of the synthesized polypeptide to be predicted. Thus, bacterial genome mining via in silico analyses of NRPS genes offers an attractive opportunity to uncover new bioactive non-ribosomally synthesized peptides.
View Article and Find Full Text PDFSystemic acquired resistance (SAR) is a type of pathogen-induced broad-spectrum resistance in plants. During SAR, primary infection-induced rapid generation and transportation of mobile signal(s) 'prepare' the rest of the plant for subsequent infections. Several, seemingly unrelated, mobile chemical inducers of SAR have been identified, at least two of which function in a feed-back regulatory loop with a lipid transfer-like protein.
View Article and Find Full Text PDFUnlabelled: Pathogenicity of the rice pathogenic bacterium Xanthomonas oryzae pv. oryzae depends on a Hrp (hypersensitive response and pathogenicity) type III secretion system; the expression of which is induced in planta. Expression of the hrp operons is under transcriptional control of two key regulatory proteins, HrpG and HrpX.
View Article and Find Full Text PDFThe Pseudomonas syringae effector AvrB interacts with four related soybean (Glycine max) proteins (GmRIN4a-d), three (GmRIN4b, c, d) of which also interact with the cognate resistance (R) protein, Rpg1-b. Here, we investigated the specific requirements for the GmRIN4 proteins in R-mediated resistance and examined the mechanism of Rpg1-b activation. Using virus-induced gene silencing, we show that only GmRIN4a and b are required for Rpg1-b-mediated resistance.
View Article and Find Full Text PDFType III secretion (T3S) systems play key roles in the assembly of flagella and the translocation of bacterial effector proteins into eukaryotic host cells. Eleven proteins which are conserved among gram-negative plant and animal pathogenic bacteria have been proposed to build up the basal structure of the T3S system, which spans both inner and outer bacterial membranes. We studied six conserved proteins, termed Hrc, predicted to reside in the inner membrane of the plant pathogen Xanthomonas campestris pv.
View Article and Find Full Text PDF