The present article describes a one-pot and cascade mode process using biocompatible/biodegradable reagents, for simply obtaining surfactant compositions comprising mixtures of d-mannuronic acid and l-guluronic acid directly from oligoalginates or semi-refined alginates (mixtures of alginate, cellulose, hemicellulose, laminaran, and fucan). Simple treatments of partial purification of the reaction crudes (elimination of the salts and/or the residual fatty alcohols) or isolation of the surfactant compositions result in sugar-based compounds having performance levels appropriate to applications in detergency. In addition, the challenging extension of this cascading one-pot synthesis technology to crude milled brown seaweeds was successfully carried out to provide promising surface-active compositions made up of alkyl uronate and alkyl glycoside monosaccharides.
View Article and Find Full Text PDFThis work is devoted to the study of two copper complexes (Cu) bearing pyridine ligands, which were synthesized, evaluated and tested as new visible light photoinitiators for the free radical photopolymerization (FRP) of acrylates functional groups in thick and thin samples upon light-emitting diodes (LED) at 405 and 455 nm irradiation. These latter wavelengths are considered to be safe to produce polymer materials. The photoinitiation abilities of these organometallic compounds were evaluated in combination with an iodonium (Iod) salt and/or amine (e.
View Article and Find Full Text PDFBeilstein J Org Chem
August 2021
The use of cheap and safe near-infrared (NIR) light is still the subject of intense research efforts but remains a huge challenge due to the associated low photon energy (wavelength from 0.78 to 2.5 µm).
View Article and Find Full Text PDFIn this paper, nine organic compounds based on the coumarin scaffold and different substituents were synthesized and used as high-performance photoinitiators for free radical photopolymerization (FRP) of meth(acrylate) functions under visible light irradiation using LED at 405 nm. In fact, these compounds showed a very high initiation capacity and very good polymerization profiles (both high rate of polymerization (Rp) and final conversion (FC)) using two and three-component photoinitiating systems based on coum/iodonium salt (0.1%/1% /) and coum/iodonium salt/amine (0.
View Article and Find Full Text PDFNIR light-induced polymerization has attracted more and more attention in the photopolymerization field due to the possibility to use safer and more penetrating wavelengths, reducing the hazardousness. Here, a novel perspective for the free radical polymerization of acrylate-based monomers based on triplet-triplet annihilation upconversion (TTA-UC) is proposed, avoiding the introduction of heavy metals, usually required in the TTA processes. Thermal imaging experiments and Fourier transform infrared spectroscopy are respectively used to record the temperature during NIR irradiation and measure the reactive function conversion.
View Article and Find Full Text PDFIn this article, different substituents (benzoyl, acetyl, styryl) are introduced onto the carbazole scaffold to obtain 8 novel carbazole derivatives. Interestingly, a benzoyl substituent, connected to a carbazole group, could form a benzophenone moiety, which composes a monocomponent Type II benzophenone-carbazole photoinitiator (PI). The synergetic effect of the benzophenone moiety and the amine in the carbazole moiety is expected to produce high performance photoinitiating systems (PISs) for the free radical photopolymerization (FRP).
View Article and Find Full Text PDFPolymerization photoinitiators that can be activated under low light intensity and in the visible range are being pursued by both the academic and industrial communities. To efficiently harvest light and initiate a polymerization process, dyes with high molar extinction coefficients in the visible range are ideal candidates. In this field, Donor-acceptor Stenhouse Adducts (DASA) which belong to a class of recently discovered organic photochromic molecules still lack practical applications.
View Article and Find Full Text PDFA series of ten push-pull chromophores comprising 1-cyclopenta[]naphthalene-1,3(2)-dione as the electron-withdrawing group have been designed, synthesized, and characterized by UV-visible absorption and fluorescence spectroscopy, cyclic voltammetry and theoretical calculations. The solvatochromic behavior of the different dyes has been examined in 23 solvents and a positive solvatochromism has been found for all dyes using the Kamlet-Taft solvatochromic relationship, demonstrating the polar form to be stabilized in polar solvents. To establish the interest of this polyaromatic electron acceptor only synthesizable in a multistep procedure, a comparison with the analog series based on the benchmark indane-1,3-dione (1-indene-1,3(2)-dione) has been done.
View Article and Find Full Text PDFRecent progresses achieved in terms of synthetic procedures allow now the access to polymers of well-defined composition, molecular weight and architecture. Thanks to these recent progresses in polymer engineering, the scope of applications of polymers is far wider than that of any other class of material, ranging from adhesives, coatings, packaging materials, inks, paints, optics, 3D printing, microelectronics or textiles. From a synthetic viewpoint, photoredox catalysis, originally developed for organic chemistry, has recently been applied to the polymer synthesis, constituting a major breakthrough in polymer chemistry.
View Article and Find Full Text PDFPush⁻pull dyes absorbing in the visible range have been extensively studied so that a variety of structures have already been synthesized and reported in the literature. Conversely, dyes absorbing in the near and far infrared region are more scarce and this particularity relies on the following points: difficulty of purification, presence of side-reaction during synthesis, low availability of starting materials, and low reaction yields. Over the years, several strategies such as the elongation of the π-conjugated spacer or the improvement of the electron-donating and accepting ability of both donors and acceptors connected via a conjugated or an aliphatic spacer have been examined to red-shift the absorption spectra of well-established visible dyes.
View Article and Find Full Text PDF