Phosphoinositide-3-kinase γ (PI3Kγ) is highly expressed in immune cells and promotes the production and migration of inflammatory mediators. The inhibition of PI3Kγ has been shown to repolarize the tumor immune microenvironment to a more inflammatory phenotype, thereby controlling immune suppression in cancer. Herein, we report the structure-based optimization of an early lead series of pyrazolopyrimidine isoindolinones, which culminated in the discovery of highly potent and isoform-selective PI3Kγ inhibitors with favorable drug-like properties.
View Article and Find Full Text PDFThe successful application of immunotherapy in the treatment of cancer relies on effective engagement of immune cells in the tumor microenvironment. Phosphoinositide 3-kinase γ (PI3Kγ) is highly expressed in tumor-associated macrophages, and its expression levels are associated with tumor immunosuppression and growth. Selective inhibition of PI3Kγ offers a promising strategy in immuno-oncology, which has led to the development of numerous potent PI3Kγ inhibitors with variable selectivity profiles.
View Article and Find Full Text PDFThe selective inhibition of the lipid signaling enzyme PI3Kγ constitutes an opportunity to mediate immunosuppression and inflammation within the tumor microenvironment but is difficult to achieve due to the high sequence homology across the class I PI3K isoforms. Here, we describe the design of a novel series of potent PI3Kγ inhibitors that attain high isoform selectivity through the divergent projection of substituents into both the "selectivity" and "alkyl-induced" pockets within the adenosine triphosphate (ATP) binding site of PI3Kγ. These efforts have culminated in the discovery of 5-[2-amino-3-(1-methyl-1-pyrazol-4-yl)pyrazolo[1,5-]pyrimidin-5-yl]-2-[(1)-1-cyclopropylethyl]-7-(trifluoromethyl)-2,3-dihydro-1-isoindol-1-one (, IC = 0.
View Article and Find Full Text PDFFluorescent base analogs (FBAs) are powerful probes of nucleic acids' structures and dynamics. However, previously reported FBAs exhibit relatively low brightness and therefore limited sensitivity of detection. Here we report the hitherto brightest FBA that has ideal molecular rotor properties for detecting local dynamic motions associated with base pair mismatches.
View Article and Find Full Text PDFThe catalytic asymmetric synthesis of complex molecules has been the focus of our research program for several decades because such strategies have significant utility for the construction of chiral building blocks for drug development as well as the total synthesis of natural products. Cycloaddition reactions are very powerful transformations in organic synthesis providing access to highly functionalized motifs from simple starting materials. In concert with this central interest, four decades ago, we reported the palladium-catalyzed trimethylenemethane (TMM) cycloaddition for forging odd-membered ring systems.
View Article and Find Full Text PDFEnantioselective incorporation of trifluoromethyl (-CF) and trifuoromethylthio (-SCF) groups in small molecules is of high interest to modulate the potency and pharmacological properties of drug candidates. Herein, we report a Zn-ProPhenol catalyzed diastereo- and enantioselective Mannich addition of α-trifluoromethyl- and α-trifuoromethylthio-substituted ketones. This transformation uses cyclic and acyclic ketones and generates quaternary trifluoromethyl and tetrasubstituted trifuoromethylthio stereogenic centers in excellent yields and selectivities.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2020
The ProPhenol ligand is a member of the chiral aza-crown family that spontaneously forms a bimetallic complex upon treatment with alkyl metal reagents, such as Et Zn and Bu Mg. The resulting complex features Lewis acidic and Brønsted basic sites, enabling simultaneous activation of both nucleophile and electrophile in the same chiral environment. Since the initial report in 2000, metal-ProPhenol catalysts have been used to facilitate a broad range of asymmetric transformations, including aldol, Mannich, and Henry reactions, as well as alkynylations and conjugation additions.
View Article and Find Full Text PDFA path-scouting investigation into the highly cytotoxic marine macrolide callyspongiolide is reported that capitalizes on the selective formation of the C10-C11 alkene site. While the closure of the macrocycle by ring closing alkyne metathesis (RCAM) with the aid of a molybdenum alkylidyne complex was high yielding, the envisaged semi-reduction of the cycloalkyne to the corresponding E-alkene proved challenging. The reasons are likely steric in origin, in that the methyl branches on either side of the alkyne seem to prevent effective coordination of the substrate to the ruthenium catalyst, which must carry a bulky Cp* ligand to ensure high trans-selectivity.
View Article and Find Full Text PDFThe macrocyclic core of the cytotoxic marine natural product callyspongiolide (1) was forged by ring-closing alkyne metathesis (RCAM) of an ynoate precursor using a molybdenum alkylidyne complex endowed with triarylsilanolate ligands as the catalyst. This result is remarkable in view of the failed attempts documented in the literature at converting electron deficient alkynes with the aid of more classical catalysts. The subsequent Z-selective semi-reduction of the resulting cycloalkyne by hydrogenation over nickel boride required careful optimization in order to minimize overreduction and competing dehalogenation of the compound's alkenyl iodide terminus as needed for final attachment of the side chain of 1 by Sonogashira coupling.
View Article and Find Full Text PDFA protocol for the asymmetric synthesis of highly substituted chiral allenes with control of point and axial chirality has been developed. A palladium-catalyzed [3+2] cycloaddition using readily available racemic allenes gives access to densely functionalized chiral allenes with excellent yields and functional group tolerance. The catalytic asymmetric protocol utilizes a broad range of allenyl TMM (trimethylenemethane) donors to form cyclopentanes, pyrrolidines, and spirocycles with very good control of regio-, enantio-, and diastereoselectivity.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2018
A nitrile-substituted trimethylenemethane (TMM) donor undergoes palladium-catalyzed [3+2] cycloadditions with fluorinated ketones to generate tetrasubstituted trifluoromethylated centers in high enantioselectivity under mild conditions. The generation of the palladium-TMM complex was achieved by a self-deprotonation strategy, which shows remarkable improvements in regiocontrol, efficiency, and atom economy of asymmetric [3+2] cycloadditions. Moreover, the versatility of the nitrile group provides direct access to a variety of synthetically useful intermediates, including amides, aldehydes, and esters.
View Article and Find Full Text PDFBinding reactions of HgII and AgI to pyrimidine-pyrimidine mismatches in duplex DNA were characterized using fluorescent nucleobase analogs, thermal denaturation and 1H NMR. Unlike AgI, HgII exhibited stoichiometric, site-specific binding of C-T mismatches. The on- and off-rates of HgII binding were approximately 10-fold faster to C-T mismatches (kon ≈ 105 M-1 s-1, koff ≈ 10-3 s-1) as compared to T-T mismatches (kon ≈ 104 M-1 s-1, koff ≈ 10-4 s-1), resulting in very similar equilibrium binding affinities for both types of 'all natural' metallo base pairs (Kd ≈ 10-150 nM).
View Article and Find Full Text PDFThe thymidine analogue T was used for the first fluorescence-based study of direct, site-specific metal binding reactions involving unmodified nucleobases in duplex DNA. The fluorescence properties of T-A base pairs were highly sensitive to mercury binding reactions at T-T mismatches located at an adjacent site or one base pair away. This allowed for precise determination of the local kinetic and thermodynamic parameters of T-Hg-T binding reactions.
View Article and Find Full Text PDFis a new fluorescent thymidine mimic composed of 2'-deoxyuridine fused to dimethylaniline. exhibits the same pKa and base pairing characteristics as native thymidine residues, and its fluorescence properties are highly sensitive to nucleobase ionization, base pairing and metal binding.
View Article and Find Full Text PDFIonized nucleobases participate in pairing interactions outside of Watson and Crick's rules. Base pairing and ionization can be coupled via global conformational changes to raise the apparent pKa of protonated nucleobases to values above physiological pH. To provide the first specific reporter of proton-coupled DNA folding, we developed a "push-pull" fluorescent nucleoside analog composed of dimethylaniline (DMA) fused to deoxycytidine.
View Article and Find Full Text PDFThe human immunodeficiency virus type-1 (HIV-1) Tat protein stimulates transcriptional elongation. Tat is involved in the transcription machinery by binding to the transactivation response region (TAR) RNA stem-loop structure, which is encoded by the 5' leader sequence found in all HIV-1 mRNAs. Herein, we report the rational design, synthesis, and in vitro evaluation of new RNA binding agents that were conceived in order to bind strongly and selectively to the stem-loop structure of TAR RNA and, thus, inhibit the Tat/TAR interaction.
View Article and Find Full Text PDFFluorescent pyrimidine analogs containing a fused biphenyl unit were prepared in high yields using stereoselective N-glycosylation and Suzuki-Miyaura cross-coupling reactions. The resulting "push-pull" fluorophores exhibit highly solvatochromic emissions from twisted intramolecular charge-transfer (TICT) states.
View Article and Find Full Text PDFPalladium-catalyzed hydrogenation of an octahedral zinc trans-ditriflate hemiporphyrazine "HpH2Zn(OTf)2" furnishes a new macrocycle "HpH6Zn(OTf)2". This reaction is fully reversible upon heating in nitrobenzene, and the conversion is easily monitored by changes in color and fluorescence properties. The reversible cycling between these molecules may find future applications in hemiporphyrazine-based catalysts and/or hydrogen storage devices.
View Article and Find Full Text PDFAn efficient method for the N-2-deoxyribosylation of modified nucleobases by 2-deoxythioriboside donors is reported. In the presence of an in situ silylated nucleobase, thioglycosides can be activated with NIS/HOTf to give nucleosides in high yields and with good β-selectivity. By tuning the protecting groups on the C3 and C5 hydroxyls, α/β ratios ranging from 1.
View Article and Find Full Text PDF