Heart failure with preserved ejection fraction (HFpEF) is a complex syndrome associated with increased myocardial stiffness and cardiac filling abnormalities. Prior studies implicated increased α-tubulin detyrosination, which is catalyzed by the vasohibin enzymes, as a contributor to increased stabilization of the cardiomyocyte microtubule network (MTN) and stiffness in failing human hearts. We explored whether increased MTN detyrosination contributed to impaired diastolic function in the ZSF1 obese rat model of HFpEF and designed a small-molecule vasohibin inhibitor to ablate MTN detyrosination in vivo.
View Article and Find Full Text PDFThe two related members of the vasohibin family, VASH1 and VASH2, encode human tubulin detyrosinases. Here we demonstrate that, in contrast to VASH1, which requires binding of small vasohibin binding protein (SVBP), VASH2 has autonomous tubulin detyrosinating activity. Moreover, we demonstrate that SVBP acts as a bona fide activator of both enzymes.
View Article and Find Full Text PDFTubulin glutamylation is a reversible posttranslational modification that accumulates on stable microtubules (MTs). While abnormally high levels of this modification lead to a number of disorders such as male sterility, retinal degeneration, and neurodegeneration, very little is known about the molecular mechanisms underlying the regulation of glutamylase activity. Here, we found that CSAP forms a complex with TTLL5, and we demonstrate that the two proteins regulate their reciprocal abundance.
View Article and Find Full Text PDF