The polarization control of micro- and nanolasers is an important topic in nanophotonics. Up to now, the simultaneous generation of two distinguishable orthogonally polarized lasing modes from a single organic microlaser remains a critical challenge. Here, we demonstrate simultaneously orthogonally polarized dual lasing from a microcavity filled with an organic single crystal exhibiting selective strong coupling.
View Article and Find Full Text PDFCircularly polarized (CP) organic light-emitting diodes (OLEDs) have attracted attention in potential applications, including novel display and photonic technologies. However, conventional approaches cannot meet the requirements of device performance, such as high dissymmetry factor, high directionality, narrowband emission, simplified device structure, and low costs. Here, we demonstrate spin-valley-locked CP-OLEDs without chiral emitters but based on photonic spin-orbit coupling, where photons with opposite CP characteristics are emitted from different optical valleys.
View Article and Find Full Text PDFTheoretical and experimental studies suggest that both Hermitian and non-Hermitian quasicrystals show localization due to the fractal spectrum and to the transition to diffusive bands via exceptional points, respectively. Here, we present an experimental study of a dodecagonal photonic quasicrystal based on electromagnetically induced transparency in a Rb vapor cell. First, we observe the suppression of the wave packet expansion in the Hermitian case.
View Article and Find Full Text PDFIntegrated electro-optical switches are essential as one of the fundamental elements in the development of modern optoelectronics. As an architecture for photonic systems exciton polaritons, hybrid bosonic quasiparticles that possess unique properties derived from both excitons and photons, have shown much promise. For this system, we demonstrate a significant improvement of emitted intensity and condensation threshold by applying an electric field to a microcavity filled with an organic microbelt.
View Article and Find Full Text PDFWe show theoretically that Rashba-Dresselhaus spin-orbit coupling (RDSOC) in lattices acts as a synthetic gauge field. This allows us to control both the phase and the magnitude of tunneling coefficients between sites, which is the key ingredient to implement topological Hamitonians and spin lattices useful for simulation perpectives. We use liquid crystal based microcavities in which RDSOC can be switched on and off as a model platform.
View Article and Find Full Text PDFThe Klein paradox consists in the perfect tunneling of relativistic particles through high potential barriers. It is responsible for the exceptional conductive properties of graphene. It was recently studied in atomic condensates and topological photonics and phononics.
View Article and Find Full Text PDFTopological photonics provides an important platform for the development of photonic devices with robust disorder-immune light transport and controllable helicity. Mixing photons with excitons (or polaritons) gives rise to nontrivial polaritonic bands with chiral modes, allowing the manipulation of helical lasers in strongly coupled light-matter systems. In this work, helical polariton lasing from topological valleys of an organic anisotropic microcrystalline cavity based on tailored local nontrivial band geometry is demonstrated.
View Article and Find Full Text PDFThe engineering of the energy dispersion of polaritons in microcavities through nanofabrication or through the exploitation of intrinsic material and cavity anisotropies has demonstrated many intriguing effects related to topology and emergent gauge fields such as the anomalous quantum Hall and Rashba effects. Here we show how we can obtain different Berry curvature distributions of polariton bands in a strongly coupled organic-inorganic two-dimensional perovskite single-crystal microcavity. The spatial anisotropy of the perovskite crystal combined with photonic spin-orbit coupling produce two Hamilton diabolical points in the dispersion.
View Article and Find Full Text PDFThe geometry of Hamiltonian's eigenstates is encoded in the quantum geometric tensor (QGT), containing both the Berry curvature, central to the description of topological matter, and the quantum metric. So far, the full QGT has been measured only in Hermitian systems, where the role of the quantum metric is mostly limited to corrections. On the contrary, in non-Hermitian systems, and, in particular, near exceptional points, the quantum metric is expected to diverge and to often play a dominant role, for example, in the enhanced sensing and in wave packet dynamics.
View Article and Find Full Text PDFOptical activity, also called circular birefringence, is known for two hundred years, but its applications for topological photonics remain unexplored. Unlike the Faraday effect, the optical activity provokes rotation of the linear polarization of light without magnetic effects, thus preserving the time-reversal symmetry. In this work, we report a direct measurement of the Berry curvature and quantum metric of the photonic modes of a planar cavity, containing a birefringent organic microcrystal (perylene) and exhibiting emergent optical activity.
View Article and Find Full Text PDFWe report on polariton condensation in photonic molecules formed by two coupled micropillars. We show that the condensation process is strongly affected by the interaction with the cloud of uncondensed excitons and thus strongly depends on the exact localization of these excitons within the molecule. Under symmetric excitation conditions, condensation is triggered on both binding and antibinding polariton states of the molecule.
View Article and Find Full Text PDFWe investigate the effect of interactions in zero-dimensional polariton condensates. The shape of the condensate wave function is shown to be modified by repulsive interactions with the reservoir of uncondensed excitons. In large micropillar cavities, when uncondensed excitons are located at the center, the condensate is ejected toward the pillar edges.
View Article and Find Full Text PDFA remarkable analogy is established between the well-known spin Hall effect and the polarization dependence of Rayleigh scattering of light in microcavities. This dependence results from the strong spin effect in elastic scattering of exciton polaritons: if the initial polariton state has a zero spin and is characterized by some linear polarization, the scattered polaritons become strongly spin polarized. The polarization in the scattered state can be positive or negative dependent on the orientation of the linear polarization of the initial state and on the direction of scattering.
View Article and Find Full Text PDF