Publications by authors named "Guillaume Lassalle"

Sunken oil mats (SOMs) pose a significant threat to marine ecosystems, yet their long-term fate and weathering processes remain poorly understood. This study investigates the degradation of biomarkers in a SOM sample collected from the Brazilian coast following the long-lasting 2019 oil spill. The SOM clearly distinguished from spilt oil and were attributed to tanker-washing residues.

View Article and Find Full Text PDF

Mangroves are prone to biotic and abiotic stressors of natural and anthropogenic origin, of which oil pollution is one of the most harmful. Yet the response of mangrove species to acute and chronic oil exposure, as well as to other stressors, remains barely documented. In this study, a non-destructive, non-invasive approach based on field spectroscopy is proposed to unravel these responses.

View Article and Find Full Text PDF

Oil spills cause long-lasting mangrove loss, threatening their conservation and ecosystem services worldwide. Oil spills impact mangrove forests at various spatial and temporal scales. Yet, their long-term sublethal effects on trees remain poorly documented.

View Article and Find Full Text PDF

This review outlines the advances achieved in monitoring natural and anthropogenic plant stressors by hyperspectral remote sensing over the last 50 years. A broad diversity of methods based on field and imaging spectroscopy were developed in that field for precision farming and environmental monitoring purposes. From the 466 articles reviewed, we identified the main factors to consider to achieve accurate monitoring of plant stress, namely: The plant species and the stressor to monitor, the goal (detection or quantification), and scale (field or broad-scale) of monitoring, and the need for controlled experiments.

View Article and Find Full Text PDF

Monitoring plant metal uptake is essential for assessing the ecological risks of contaminated sites. While traditional techniques used to achieve this are destructive, Visible Near-Infrared (VNIR) reflectance spectroscopy represents a good alternative to monitor pollution remotely. Based on previous work, this study proposes a methodology for mapping the content of several metals in leaves (Cr, Cu, Ni and Zn) under realistic field conditions and from airborne imaging.

View Article and Find Full Text PDF

The monitoring of soil contamination deriving from oil and gas industry remains difficult in vegetated areas. Over the last decade, optical remote sensing has proved helpful for this purpose. By tracking alterations in vegetation biochemistry through its optical properties, multi- and hyperspectral remote sensing allow detecting and quantifying crude oil and petroleum products leaked following accidental leakages or bad cessation practices.

View Article and Find Full Text PDF

The persistence of soil contamination after cessation of oil activities remains a major environmental issue in tropical regions. The assessment of the contamination is particularly difficult on vegetated sites, but promising advances in reflectance spectroscopy have recently emerged for this purpose. This study aimed to exploit vegetation reflectance for estimating low concentrations of Total Petroleum Hydrocarbons (TPH) in soils.

View Article and Find Full Text PDF

Recent advances in hyperspectral spectroscopy suggest making use of leaf optical properties for monitoring soil contamination in oil production regions by detecting pigment alterations induced by Total Petroleum Hydrocarbons (TPH). However, this provides no quantitative information about the level of contamination. To achieve this, we propose an approach based on the inversion of the PROSPECT model.

View Article and Find Full Text PDF

The use of hyperspectral spectroscopy for oil detection recently sparked a growing interest for risk assessment over vegetated areas. In a perspective of image applications, we conducted a greenhouse experiment on a brownfield-established species, Rubus fruticosus L. (bramble), to evaluate the potential of vegetation reflectance to detect and discriminate among various oil-contaminated soils.

View Article and Find Full Text PDF

The remote assessment of soil contamination remains difficult in vegetated areas. Recent advances in hyperspectral spectroscopy suggest making use of plant reflectance to monitor oil and gas leakage from industrial facilities. However, knowledge about plant response to oil contamination is still limited, so only very few imaging applications are possible at this stage.

View Article and Find Full Text PDF