We previously reported that human muscle-derived stem cells (hMuStem cells) contribute to tissue repair after local administration into injured skeletal muscle or infarcted heart in immunodeficient rodent models. However, extrapolation of these findings to a clinical context is problematic owing to the considerable differences often seen between in vivo findings in humans versus rodents. Therefore, we investigated whether the muscle regenerative behavior of hMuStem cells is maintained in a clinically relevant transplantation context.
View Article and Find Full Text PDFHuman heart development is governed by transcription factor (TF) networks controlling dynamic and temporal gene expression alterations. Therefore, to comprehensively characterize these transcriptional regulations, day-to-day transcriptomic profiles were generated throughout the directed cardiac differentiation, starting from three distinct human- induced pluripotent stem cell lines from healthy donors (32 days). We applied an expression-based correlation score to the chronological expression profiles of the TF genes, and clustered them into 12 sequential gene expression waves.
View Article and Find Full Text PDFThis manuscript proposes an efficient and reproducible protocol for the generation of genetically modified human induced pluripotent stem cells (hiPSCs) by genome editing using CRISPR-Cas9 technology. Here, we describe the experimental strategy for generating knockout (KO) and knockin (KI) clonal populations of hiPSCs using single-cell sorting by flow cytometry. We efficiently achieved up to 15 kb deletions, molecular tag insertions, and single-nucleotide editing in hiPSCs.
View Article and Find Full Text PDFObjective: Despite efficiency and safety evidence, ambulatory endovascular revascularisation for lower extremity arterial disease (LEAD) accounted for only 5% of interventions in France in 2016. Such a low rate suggests temporal and geographical space disparities. The aim of this study was to describe the space-time development of ambulatory endovascular revascularisation for LEAD in France and to investigate the contributions of healthcare services and population characteristics as potential determinants.
View Article and Find Full Text PDFCatecholaminergic Polymorphic Ventricular Tachycardia (CPVT) is an exercise and emotional stress-induced life-threatening inherited heart rhythm disorder, characterized by an abnormal cellular calcium homeostasis. Most reported cases have been linked to mutations in the gene encoding the type 2 ryanodine receptor gene, RYR2. We generated induced pluripotent stem cells (hiPSCs) from peripheral blood mononuclear cells (PBMC) from three CPVT-affected patients, two of them carrying p.
View Article and Find Full Text PDFBackground: Muscular dystrophies (MDs) are inherited diseases in which a dysregulation of the immune response exacerbates disease severity and are characterized by infiltration of various immune cell types leading to muscle inflammation, fiber necrosis and fibrosis. Immunosuppressive properties have been attributed to mesenchymal stem cells (MSCs) that regulate the phenotype and function of different immune cells. However, such properties were poorly considered until now for adult stem cells with myogenic potential and advanced as possible therapeutic candidates for MDs.
View Article and Find Full Text PDFFour human induced pluripotent stem cell (hiPSC) lines have been generated from healthy control European donors, and validated. This resource represents a useful tool for stem cell-based research, as references for developmental studies and disease modeling linked to any type of human tissue and organ, in an ethnical-, sex- and age-matched context. They providea reliable in-vitro model for single cell- and tissue-based investigations, and are also a valuable tool for genome editing-based studies.
View Article and Find Full Text PDFCatecholamine-induced QT prolongation (CIQTP) is an inherited cardiac disease characterized by a normal baseline ECG and a risk of sudden cardiac death by ventricular arrhythmia due to a QT prolongation that only appears during catecholergic stimulation, especially mental stress. Induced pluripotent stem cells (hiPSCs) were generated from peripheral blood mononuclear cells collected from two CIQTP-affected patients from two different families. These two hiPSC lines are a valuable model to study biological alterations due to CIQTP.
View Article and Find Full Text PDFStudies on animal models have shown that Irx5 is an important regulator of cardiac development and that it regulates ventricular electrical repolarization gradient in the adult heart. Mutations in IRX5 have also been linked in humans to cardiac conduction defects. In order to fully characterize the role of IRX5 during cardiac development and in cardiomyocyte function, we generated three genetically-modified human induced pluripotent stem cell lines: two knockout lines (heterozygous and homozygous) and a knockin HA-tagged line (homozygous).
View Article and Find Full Text PDFAims: Several inherited arrhythmic diseases have been linked to single gene mutations in cardiac ion channels and interacting proteins. However, the mechanisms underlying most arrhythmias, are thought to involve altered regulation of the expression of multiple effectors. In this study, we aimed to examine the role of a transcription factor (TF) belonging to the Iroquois homeobox family, IRX5, in cardiac electrical function.
View Article and Find Full Text PDFObjective: To assess whether disparities in rates of same-day discharge for lower extremities arterial disease (5%) and varicose vein interventions (90%) are associated with the burden of postprocedural rehabilitation process, measured through the duration of sick leave.
Design: Retrospective observational study using French National Health Insurance data in 2012-2016.
Setting: The French National Health Data System (Système National des Données de Santé), which covers 98.
Hypertension is the most common chronic disease and the leading risk factor for disability and premature deaths in the world, accounting for more than 9 million deaths annually. Resistant hypertension is a particularly severe form of hypertension. It was described 50 years ago and since then has been a very active field of research.
View Article and Find Full Text PDFLong-term survivors after allogeneic hematopoietic stem cell transplantation (allo-HSCT) are at high risk for treatment-related adverse events, that may worsen physical capacity and may induce fatigue and disability. The aims of this prospective study were to evaluate exercise capacity in allotransplant survivors and its relationship with fatigue and disability. Patient-reported outcomes and exercise capacity were evaluated in 71 non-relapse patients 1 year after allo-HSCT, using validated questionnaires, cardiopulmonary exercise testing (CPET) with measure of peak oxygen uptake (peakVO) and deconditioning, pulmonary function testing, echocardiography and 6-min walk test.
View Article and Find Full Text PDFPatients with HIV present with a higher prevalence of QT prolongation, of which molecular bases are still not clear. Among HIV proteins, Tat serves as a transactivator that stimulates viral genes expression and is required for efficient HIV replication. Tat is actively secreted into the blood by infected T-cells and affects organs such as the heart.
View Article and Find Full Text PDFPurpose: Cardiac cell therapy is a promising treatment for acute myocardial infarction (AMI), leading to cardiac function improvement. However, whether it translates into quality of life (QoL) improvement is unclear. We hypothesized that administration of bone marrow cells (BMC) to patients with AMI improves QoL.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
April 2016
Purpose: Few data are available regarding the relation of left ventricular (LV) mechanical dyssynchrony to remodelling after acute myocardial infarction (MI) and stem cell therapy. We evaluated the 1-year time course of both LV mechanical dyssynchrony and remodelling in patients enrolled in the BONAMI trial, a randomized, multicenter controlled trial assessing cell therapy in patients with reperfused MI.
Methods: Patients with acute MI and ejection fraction (EF) ≤ 45 % were randomized to cell therapy or to control and underwent thallium single-photon emission computed tomography (SPECT), radionuclide angiography, and echocardiography at baseline, 3 months, and 1 year.
Duchenne muscular dystrophy may affect cardiac muscle, producing a dystrophic cardiomyopathy in humans and the mdx mouse. We tested the hypothesis that oxidative stress participates in disrupting calcium handling and contractility in the mdx mouse with established cardiomyopathy. We found increased expression (fivefold) of the NADPH oxidase (NOX) 2 in the mdx hearts compared with wild type, along with increased superoxide production.
View Article and Find Full Text PDFIntroduction: Although autologous bone marrow cell (BMC) therapy has emerged as a promising treatment for acute myocardial infarction (AMI), trials reported mixed results. In the BONAMI trial, active smoking reduced cardiac function recovery after reperfused AMI. Therefore, we hypothesized that variability in the functionality of BMCs retrieved from patients with cardiovascular risk factors may partly explain these mixed results.
View Article and Find Full Text PDFBackground: To improve the efficacy of bone marrow-derived mesenchymal stem cell (MSC) therapy targeted to infarcted myocardium, we investigated whether a self-setting silanized hydroxypropyl methylcellulose (Si-HPMC) hydrogel seeded with MSC (MSC+hydrogel) could preserve cardiac function and attenuate left ventricular (LV) remodeling during an 8-week follow-up study in a rat model of myocardial infarction (MI).
Methodology/principal Finding: Si-HPMC hydrogel alone, MSC alone or MSC+hydrogel were injected into the myocardium immediately after coronary artery ligation in female Lewis rats. Animals in the MSC+hydrogel group showed an increase in cardiac function up to 28 days after MI and a mid-term prevention of cardiac function alteration at day 56.
Whereas cardiac-derived c-kit(+) stem cells (CSCs) and bone marrow-derived mesenchymal stem cells (MSCs) are undergoing clinical trials testing safety and efficacy as a cell-based therapy, the relative therapeutic and biologic efficacy of these two cell types is unknown. We hypothesized that human CSCs have greater ability than MSCs to engraft, differentiate, and improve cardiac function. We compared intramyocardial injection of human fetal CSCs (36,000) with two doses of adult MSCs (36,000 and 1,000,000) or control (phosphate buffered saline) in nonobese diabetic/severe combined immune deficiency mice after coronary artery ligation.
View Article and Find Full Text PDFAims: Intracoronary administration of autologous bone marrow cells (BMCs) leads to a modest improvement in cardiac function, but the effect on myocardial viability is unknown. The aim of this randomized multicentre study was to evaluate the effect of BMC therapy on myocardial viability in patients with decreased left ventricular ejection fraction (LVEF) after acute myocardial infarction (AMI) and to identify predictive factors for improvement of myocardial viability.
Methods And Results: One hundred and one patients with AMI and successful reperfusion, LVEF ≤45%, and decreased myocardial viability (resting Tl201-SPECT) were randomized to either a control group (n = 49) or a BMC group (n = 52).
Whether the growth hormone (GH)/insulin-like growth factor 1(IGF-1) axis exerts cardioprotective effects remains controversial; and the underlying mechanism(s) for such actions are unclear. Here we tested the hypothesis that growth hormone-releasing hormone (GHRH) directly activates cellular reparative mechanisms within the injured heart, in a GH/IGF-1 independent fashion. After experimental myocardial infarction (MI), rats were randomly assigned to receive, during a 4-week period, either placebo (n = 14), rat recombinant GH (n = 8) or JI-38 (n = 8; 50 microg/kg per day), a potent GHRH agonist.
View Article and Find Full Text PDFAldosterone receptor antagonism reduces mortality and improves post-myocardial infarction (MI) remodeling. Because aldosterone and estrogen signaling pathways interact, we hypothesized that aldosterone blockade is sex-specific. Therefore, we investigated the impact of eplerenone on left ventricular (LV) remodeling and gene expression of male infarcted rats versus female infarcted rats.
View Article and Find Full Text PDF