Neurons in the brain have rich and adaptive input-output properties. Features such as heterogeneous f-I curves and spike frequency adaptation are known to place single neurons in optimal coding regimes when facing changing stimuli. Yet, it is still unclear how brain circuits exploit single-neuron flexibility, and how network-level requirements may have shaped such cellular function.
View Article and Find Full Text PDFLandmark universal function approximation results for neural networks with trained weights and biases provided impetus for the ubiquitous use of neural networks as learning models in Artificial Intelligence (AI) and neuroscience. Recent work has pushed the bounds of universal approximation by showing that arbitrary functions can similarly be learned by tuning smaller subsets of parameters, for example the output weights, within randomly initialized networks. Motivated by the fact that biases can be interpreted as biologically plausible mechanisms for adjusting unit outputs in neural networks, such as tonic inputs or activation thresholds, we investigate the expressivity of neural networks with random weights where only biases are optimized.
View Article and Find Full Text PDFBackground: Vagus nerve stimulation (VNS) is an established therapy for treating a variety of chronic diseases, such as epilepsy, depression, obesity, and for stroke rehabilitation. However, lack of precision and side-effects have hindered its efficacy and extension to new conditions. Achieving a better understanding of the relationship between VNS parameters and neural and physiological responses is therefore necessary to enable the design of personalized dosing procedures and improve precision and efficacy of VNS therapies.
View Article and Find Full Text PDFTask errors are used to learn and refine motor skills. We investigated how task assistance influences learned neural representations using Brain-Computer Interfaces (BCIs), which map neural activity into movement via a decoder. We analyzed motor cortex activity as monkeys practiced BCI with a decoder that adapted to improve or maintain performance over days.
View Article and Find Full Text PDFConscious states-state that there is something it is like to be in-seem both rich or full of detail and ineffable or hard to fully describe or recall. The problem of ineffability, in particular, is a longstanding issue in philosophy that partly motivates the explanatory gap: the belief that consciousness cannot be reduced to underlying physical processes. Here, we provide an information theoretic dynamical systems perspective on the richness and ineffability of consciousness.
View Article and Find Full Text PDFIn bioelectronic medicine, neuromodulation therapies induce neural signals to the brain or organs, modifying their function. Stimulation devices capable of triggering exogenous neural signals using electrical waveforms require a complex and multi-dimensional parameter space to control such waveforms. Determining the best combination of parameters (waveform optimization or dosing) for treating a particular patient's illness is therefore challenging.
View Article and Find Full Text PDFEffective neural stimulation requires adequate parametrization. Gaussian-process (GP)-based Bayesian optimization (BO) offers a framework to discover optimal stimulation parameters in real time. Here, we first provide a general protocol to deploy this framework in neurostimulation interventions and follow by exemplifying its use in detail.
View Article and Find Full Text PDFThe connection patterns of neural circuits form a complex network. How signaling in these circuits manifests as complex cognition and adaptive behaviour remains the central question in neuroscience. Concomitant advances in connectomics and artificial intelligence open fundamentally new opportunities to understand how connection patterns shape computational capacity in biological brain networks.
View Article and Find Full Text PDF. Neurostimulation is emerging as treatment for several diseases of the brain and peripheral organs. Due to variability arising from placement of stimulation devices, underlying neuroanatomy and physiological responses to stimulation, it is essential that neurostimulation protocols are personalized to maximize efficacy and safety.
View Article and Find Full Text PDFOur ability to use deep learning approaches to decipher neural activity would likely benefit from greater scale, in terms of both model size and datasets. However, the integration of many neural recordings into one unified model is challenging, as each recording contains the activity of different neurons from different individual animals. In this paper, we introduce a training framework and architecture designed to model the population dynamics of neural activity across diverse, large-scale neural recordings.
View Article and Find Full Text PDFIn theoretical neuroscience, recent work leverages deep learning tools to explore how some network attributes critically influence its learning dynamics. Notably, initial weight distributions with small (resp. large) variance may yield a rich (resp.
View Article and Find Full Text PDFThe complexity of the human brain gives the illusion that brain activity is intrinsically high-dimensional. Nonlinear dimensionality-reduction methods such as uniform manifold approximation and t-distributed stochastic neighbor embedding have been used for high-throughput biomedical data. However, they have not been used extensively for brain activity data such as those from functional magnetic resonance imaging (fMRI), primarily due to their inability to maintain dynamic structure.
View Article and Find Full Text PDFInvasive brain-computer interfaces hold promise to alleviate disabilities in individuals with neurologic injury, with fully implantable brain-computer interface systems expected to reach the clinic in the upcoming decade. Children with severe neurologic disabilities, like quadriplegic cerebral palsy or cervical spine trauma, could benefit from this technology. However, they have been excluded from clinical trials of intracortical brain-computer interface to date.
View Article and Find Full Text PDFNeural stimulation can alleviate paralysis and sensory deficits. Novel high-density neural interfaces can enable refined and multipronged neurostimulation interventions. To achieve this, it is essential to develop algorithmic frameworks capable of handling optimization in large parameter spaces.
View Article and Find Full Text PDFProc IEEE Int Conf Acoust Speech Signal Process
May 2022
In modern relational machine learning it is common to encounter large graphs that arise via interactions or similarities between observations in many domains. Further, in many cases the target entities for analysis are actually signals on such graphs. We propose to compare and organize such datasets of graph signals by using an earth mover's distance (EMD) with a geodesic cost over the underlying graph.
View Article and Find Full Text PDFMammalian taxonomies are conventionally defined by morphological traits and genetics. How species differ in terms of neural circuits and whether inter-species differences in neural circuit organization conform to these taxonomies is unknown. The main obstacle to the comparison of neural architectures has been differences in network reconstruction techniques, yielding species-specific connectomes that are not directly comparable to one another.
View Article and Find Full Text PDFFinding the right amount of deliberation, between insufficient and excessive, is a hard decision making problem that depends on the value we place on our time. Average-reward, putatively encoded by tonic dopamine, serves in existing reinforcement learning theory as the opportunity cost of time, including deliberation time. Importantly, this cost can itself vary with the environmental context and is not trivial to estimate.
View Article and Find Full Text PDFMany natural systems, especially biological ones, exhibit complex multivariate nonlinear dynamical behaviors that can be hard to capture by linear autoregressive models. On the other hand, generic nonlinear models such as deep recurrent neural networks often require large amounts of training data, not always available in domains such as brain imaging; also, they often lack interpretability. Domain knowledge about the types of dynamics typically observed in such systems, such as a certain type of dynamical systems models, could complement purely data-driven techniques by providing a good prior.
View Article and Find Full Text PDFArtificial neural networks have recently achieved many successes in solving sequential processing and planning tasks. Their success is often ascribed to the emergence of the task's low-dimensional latent structure in the network activity - i.e.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
June 2020
The development of neurostimulation techniques to evoke motor patterns is an active area of research. It serves as a crucial experimental tool to probe computation in neural circuits, and has applications in neuroprostheses used to aid recovery of motor function after stroke or injury to the nervous system. There are two important challenges when designing algorithms to unveil and control neurostimulation-to-motor correspondences, thereby linking spatiotemporal patterns of neural stimulation to muscle activation: (1) the exploration of motor maps needs to be fast and efficient (exhaustive search is to be avoided for clinical and experimental reasons) (2) online learning needs to be flexible enough to deal with noise and occasional spurious responses.
View Article and Find Full Text PDFExperiments show that spike-triggered stimulation performed with Bidirectional Brain-Computer-Interfaces (BBCI) can artificially strengthen connections between separate neural sites in motor cortex (MC). When spikes from a neuron recorded at one MC site trigger stimuli at a second target site after a fixed delay, the connections between sites eventually strengthen. It was also found that effective spike-stimulus delays are consistent with experimentally derived spike-timing-dependent plasticity (STDP) rules, suggesting that STDP is key to drive these changes.
View Article and Find Full Text PDFHighly connected recurrent neural networks often produce chaotic dynamics, meaning their precise activity is sensitive to small perturbations. What are the consequences of chaos for how such networks encode streams of temporal stimuli? On the one hand, chaos is a strong source of randomness, suggesting that small changes in stimuli will be obscured by intrinsically generated variability. On the other hand, recent work shows that the type of chaos that occurs in spiking networks can have a surprisingly low-dimensional structure, suggesting that there may be room for fine stimulus features to be precisely resolved.
View Article and Find Full Text PDFA large body of experimental and theoretical work on neural coding suggests that the information stored in brain circuits is represented by time-varying patterns of neural activity. Reservoir computing, where the activity of a recurrently connected pool of neurons is read by one or more units that provide an output response, successfully exploits this type of neural activity. However, the question of system robustness to small structural perturbations, such as failing neurons and synapses, has been largely overlooked.
View Article and Find Full Text PDFThis work is part of an effort to understand the neural basis for our visual system's ability, or failure, to accurately track moving visual signals. We consider here a ring model of spiking neurons, intended as a simplified computational model of a single hypercolumn of the primary visual cortex of primates. Signals that consist of edges with time-varying orientations localized in space are considered.
View Article and Find Full Text PDFFront Comput Neurosci
October 2014
Large networks of sparsely coupled, excitatory and inhibitory cells occur throughout the brain. For many models of these networks, a striking feature is that their dynamics are chaotic and thus, are sensitive to small perturbations. How does this chaos manifest in the neural code? Specifically, how variable are the spike patterns that such a network produces in response to an input signal? To answer this, we derive a bound for a general measure of variability-spike-train entropy.
View Article and Find Full Text PDF