Glucagon rapidly and profoundly stimulates hepatic glucose production (HGP), but for reasons that are unclear, this effect normally wanes after a few hours, despite sustained plasma glucagon levels. This study characterized the time course of glucagon-mediated molecular events and their relevance to metabolic flux in the livers of conscious dogs. Glucagon was either infused into the hepato-portal vein at a sixfold basal rate in the presence of somatostatin and basal insulin, or it was maintained at a basal level in control studies.
View Article and Find Full Text PDFThis study examined the impact of a hypercaloric high-fat high-fructose diet (HFFD) in dogs as a potential model for human impaired glucose tolerance (IGT) and type 2 diabetes mellitus (T2DM). The HFFD not only led to weight gain but also triggered metabolic alterations akin to the precursors of human T2DM, notably insulin resistance and β-cell dysfunction. Following the HFFD intervention, the dogs exhibited a 50% decrease in insulin sensitivity within the first four weeks, paralleling observations in the progression from normal to IGT in humans.
View Article and Find Full Text PDFGlucagon rapidly and profoundly simulates hepatic glucose production (HGP), but for reasons which are unclear, this effect normally wanes after a few hours, despite sustained plasma glucagon levels. This study characterized the time course and relevance (to metabolic flux) of glucagon mediated molecular events in the livers of conscious dogs. Glucagon was either infused into the hepato-portal vein at a 6-fold basal rate in the presence of somatostatin and basal insulin, or it was maintained at a basal level in control studies.
View Article and Find Full Text PDFIt has been proposed that brain glucagon action inhibits glucagon-stimulated hepatic glucose production (HGP), which may explain, at least in part, why glucagon's effect on HGP is transient. However, the pharmacologic off-target effects of glucagon in the brain may have been responsible for previously observed effects. Therefore, the aim of this study was to determine if central glucagon action plays a physiologic role in the regulation of HGP.
View Article and Find Full Text PDFEndogenous insulin secretion is a key regulator of postprandial hepatic glucose metabolism, but this process is dysregulated in diabetes. Subcutaneous insulin delivery alters normal insulin distribution, causing relative hepatic insulin deficiency and peripheral hyperinsulinemia, a major risk factor for metabolic disease. Our aim was to determine whether insulin's direct effect on the liver is preeminent even when insulin is given into a peripheral vein.
View Article and Find Full Text PDFThe purpose of this study was to assess insulin-stimulated gene expression in canine skeletal muscle with a particular focus on , the gene that encodes C-type natriuretic peptide, a key hormonal regulator of cardiometabolic function. Four conscious canines underwent hyperinsulinemic, euglycemic clamp studies. Skeletal muscle biopsy and arterial plasma samples were collected under basal and insulin-stimulated conditions.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
May 2021
Pancreatic insulin secretion produces an insulin gradient at the liver compared with the rest of the body (approximately 3:1). This physiological distribution is lost when insulin is injected subcutaneously, causing impaired regulation of hepatic glucose production and whole body glucose uptake, as well as arterial hyperinsulinemia. Thus, the hepatoportal insulin gradient is essential to the normal control of glucose metabolism during both fasting and feeding.
View Article and Find Full Text PDFThe objective of this study was to assess the safety of surgical common hepatic artery denervation (CHADN). This procedure has previously been shown to improve glucose tolerance in dogs fed a high-fat high-fructose (HFHF) diet. We assessed the hypoglycemic response of dogs by infusing insulin at a constant rate (1.
View Article and Find Full Text PDFHepatic glucose uptake (HGU) is critical for maintaining normal postprandial glucose metabolism. Insulin is clearly a key regulator of HGU, but the physiologic mechanisms by which it acts have yet to be established. This study sought to determine the mechanisms by which insulin regulates liver glucose uptake under postprandial-like conditions (hyperinsulinemia, hyperglycemia, and a positive portal vein-to-arterial glucose gradient).
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
May 2020
Glucagon's effect on hepatic glucose production (HGP), under hyperglycemic conditions, is time dependent such that after an initial burst of HGP, it slowly wanes. It is not known whether this is also the case under hypoglycemic conditions, where an increase in HGP is essential. This question was addressed using adrenalectomized dogs to avoid the confounding effects of other counterregulatory hormones.
View Article and Find Full Text PDFWe examined the methionine aminopeptidase 2 inhibitor fumagillin in dogs consuming a high-fat and -fructose diet (HFFD). In pilot studies (3 dogs that had consumed HFFD for 3 yr), 8 wk of daily treatment with fumagillin reduced food intake 29%, weight 6%, and the glycemic excursion during an oral glucose tolerance test (OGTT) 44%. A second group of dogs consumed the HFFD for 17 wk: pretreatment (), treatment with fumagillin (FUM; = 6), or no drug (Control, = 8) (), washout period (), and fumagillin or no drug for 1 wk ().
View Article and Find Full Text PDFAims: We previously quantified the hypoglycaemia-sparing effect of portal vs peripheral human insulin delivery. The current investigation aimed to determine whether a bioequivalent peripheral vein infusion of a hepatopreferential insulin analog, insulin-406, could similarly protect against hypoglycaemia.
Materials And Methods: Dogs received human insulin infusions into either the hepatic portal vein (PoHI, n = 7) or a peripheral vein (PeHI, n = 7) for 180 minutes at four-fold the basal secretion rate (6.
Am J Physiol Endocrinol Metab
August 2019
It is unknown whether activation of hepato-portal vein (PV) glucose sensors plays a role in incretin hormone amplification of oral glucose-stimulated insulin secretion (GSIS). In previous studies, PV glucose infusion increased GSIS through unknown mechanisms, perhaps neural stimulation of pancreatic β-cells and/or stimulation of gut incretin hormone release. Thus, there could be a difference in the incretin effect when comparing GSIS with portal rather than leg vein (LV) glucose infusion.
View Article and Find Full Text PDFThis study assessed the effectiveness of surgical sympathetic denervation of the common hepatic artery (CHADN) in improving glucose tolerance. CHADN eliminated norepinephrine content in the liver and partially decreased it in the pancreas and the upper gut. We assessed oral glucose tolerance at baseline and after 4 weeks of high-fat high-fructose (HFHF) feeding.
View Article and Find Full Text PDFWe observed that a 4-h morning (AM) duodenal infusion of glucose versus saline doubled hepatic glucose uptake (HGU) and storage during a hyperinsulinemic-hyperglycemic (HIHG) clamp that afternoon (PM). To separate the effects of AM hyperglycemia versus AM hyperinsulinemia on the PM response, we used hepatic balance and tracer ([3-H]glucose) techniques in conscious dogs. From 0 to 240 min, dogs underwent a euinsulinemic-hyperglycemic (GLC; = 7) or hyperinsulinemic-euglycemic (INS; = 8) clamp.
View Article and Find Full Text PDFThe postprandial state is characterized by a storage of nutrients in the liver, muscle, and adipose tissue for later utilization. In the case of a protein-rich meal, amino acids (AA) stimulate glucagon secretion by the α-cell. The aim of the present study was to determine the impact of the rise in glucagon on AA metabolism, particularly in the liver.
View Article and Find Full Text PDFThe contribution of hormone-independent counterregulatory signals in defense of insulin-induced hypoglycemia was determined in adrenalectomized, overnight-fasted conscious dogs receiving hepatic portal vein insulin infusions at a rate 20-fold basal. Either euglycemia was maintained () or hypoglycemia (≈45 mg/dl) was allowed to occur. There were three hypoglycemic groups: one in which hepatic autoregulation against hypoglycemia occurred in the absence of sympathetic nervous system input (), one in which autoregulation occurred in the presence of norepinephrine (NE) signaling to fat and muscle (), and one in which autoregulation occurred in the presence of NE signaling to fat, muscle, and liver ().
View Article and Find Full Text PDFInsulin can inhibit hepatic glucose production (HGP) by acting directly on the liver as well as indirectly through effects on adipose tissue, pancreas, and brain. While insulin's indirect effects are indisputable, their physiologic role in the suppression of HGP seen in response to increased insulin secretion is not clear. Likewise, the mechanisms by which insulin suppresses lipolysis and pancreatic α cell secretion under physiologic circumstances are also debated.
View Article and Find Full Text PDFRecent findings have shown an inverse association between circulating C15:0/C17:0 fatty acids with disease risk, therefore, their origin needs to be determined to understanding their role in these pathologies. Through combinations of both animal and human intervention studies, we comprehensively investigated all possible contributions of these fatty acids from the gut-microbiota, the diet, and novel endogenous biosynthesis. Investigations included an intestinal germ-free study and a C15:0/C17:0 diet dose response study.
View Article and Find Full Text PDFWe used hepatic balance and tracer ([H]glucose) techniques to examine the impact of "breakfast" on hepatic glucose metabolism later in the same day. From 0-240 min, 2 groups of conscious dogs ( = 9 dogs/group) received a duodenal infusion of glucose (GLC) or saline (SAL), then were fasted from 240-360 min. Three dogs from each group were euthanized and tissue collected at 360 min.
View Article and Find Full Text PDFLiver glycogen is important for the counterregulation of hypoglycemia and is reduced in individuals with type 1 diabetes (T1D). Here, we examined the effect of varying hepatic glycogen content on the counterregulatory response to low blood sugar in dogs. During the first 4 hours of each study, hepatic glycogen was increased by augmenting hepatic glucose uptake using hyperglycemia and a low-dose intraportal fructose infusion.
View Article and Find Full Text PDFHypoglycemia limits optimal glycemic control in type 1 diabetes mellitus (T1DM), making novel strategies to mitigate it desirable. We hypothesized that portal (Po) vein insulin delivery would lessen hypoglycemia. In the conscious dog, insulin was infused into the hepatic Po vein or a peripheral (Pe) vein at a rate four times of basal.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
May 2015
Dogs consuming a hypercaloric high-fat and -fructose diet (52 and 17% of total energy, respectively) or a diet high in either fructose or fat for 4 wk exhibited blunted net hepatic glucose uptake (NHGU) and glycogen deposition in response to hyperinsulinemia, hyperglycemia, and portal glucose delivery. The effect of a hypercaloric diet containing neither fructose nor excessive fat has not been examined. Dogs with an initial weight of ≈25 kg consumed a chow and meat diet (31% protein, 44% carbohydrate, and 26% fat) in weight-maintaining (CTR; n = 6) or excessive (Hkcal; n = 7) amounts for 4 wk (cumulative weight gain 0.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
July 2014
In dogs consuming a high-fat and -fructose diet (52 and 17% of total energy, respectively) for 4 wk, hepatic glucose uptake (HGU) in response to hyperinsulinemia, hyperglycemia, and portal glucose delivery is markedly blunted with reduction in glucokinase (GK) protein and glycogen synthase (GS) activity. The present study compared the impact of selective increases in dietary fat and fructose on liver glucose metabolism. Dogs consumed weight-maintaining chow (CTR) or hypercaloric high-fat (HFA) or high-fructose (HFR) diets diet for 4 wk before undergoing clamp studies with infusion of somatostatin and intraportal insulin (3-4 times basal) and glucagon (basal).
View Article and Find Full Text PDF