Publications by authors named "Guillaume Hennequin"

During delayed ballistic reaches, motor areas consistently display movement-specific activity patterns prior to movement onset. It is unclear why these patterns arise: while they have been proposed to seed an initial neural state from which the movement unfolds, recent experiments have uncovered the presence and necessity of ongoing inputs during movement, which may lessen the need for careful initialization. Here, we modeled the motor cortex as an input-driven dynamical system, and we asked what the optimal way to control this system to perform fast delayed reaches is.

View Article and Find Full Text PDF

The execution of goal-oriented behaviours requires a spatially coherent alignment between sensory and motor maps. The current model for sensorimotor transformation in the superior colliculus relies on the topographic mapping of static spatial receptive fields onto movement endpoints. Here, to experimentally assess the validity of this canonical static model of alignment, we dissected the visuo-motor network in the superior colliculus and performed in vivo intracellular and extracellular recordings across layers, in restrained and unrestrained conditions, to assess both the motor and the visual tuning of individual motor and premotor neurons.

View Article and Find Full Text PDF

When faced with a novel situation, people often spend substantial periods of time contemplating possible futures. For such planning to be rational, the benefits to behavior must compensate for the time spent thinking. Here, we capture these features of behavior by developing a neural network model where planning itself is controlled by the prefrontal cortex.

View Article and Find Full Text PDF

Sequential activity reflecting previously experienced temporal sequences is considered a hallmark of learning across cortical areas. However, it is unknown how cortical circuits avoid the converse problem: producing spurious sequences that are not reflecting sequences in their inputs. We develop methods to quantify and study sequentiality in neural responses.

View Article and Find Full Text PDF

Across a range of motor and cognitive tasks, cortical activity can be accurately described by low-dimensional dynamics unfolding from specific initial conditions on every trial. These "preparatory states" largely determine the subsequent evolution of both neural activity and behavior, and their importance raises questions regarding how they are, or ought to be, set. Here, we formulate motor preparation as optimal anticipatory control of future movements and show that the solution requires a form of internal feedback control of cortical circuit dynamics.

View Article and Find Full Text PDF

Sensory cortices display a suite of ubiquitous dynamical features, such as ongoing noise variability, transient overshoots and oscillations, that have so far escaped a common, principled theoretical account. We developed a unifying model for these phenomena by training a recurrent excitatory-inhibitory neural circuit model of a visual cortical hypercolumn to perform sampling-based probabilistic inference. The optimized network displayed several key biological properties, including divisive normalization and stimulus-modulated noise variability, inhibition-dominated transients at stimulus onset and strong gamma oscillations.

View Article and Find Full Text PDF

In both natural and engineered systems, communication often occurs dynamically over networks ranging from highly structured grids to largely disordered graphs. To use, or comprehend the use of, networks as efficient communication media requires understanding of how they propagate and transform information in the face of noise. Here, we develop a framework that enables us to examine how network structure, noise, and interference between consecutive packets jointly determine transmission performance in complex networks governed by linear dynamics.

View Article and Find Full Text PDF

A major challenge in systems neuroscience is to understand how the dynamics of neural circuits give rise to behaviour. Analysis of complex dynamical systems is also at the heart of control engineering, where it is central to the design of robust control strategies. Although a rich engineering literature has grown over decades to facilitate the analysis of such systems, little of it has percolated into neuroscience so far.

View Article and Find Full Text PDF

Reliable information processing is a hallmark of many physical and biological networked systems. In this paper, we propose a novel framework for modelling information transmission within a linear dynamical network. Information propagation is modelled by means of a digital communication protocol that takes into account the realistic phenomenon of inter-symbol interference.

View Article and Find Full Text PDF

In the version of this article initially published, in the PDF, equations (2) and (4) erroneously displayed a curly bracket on the right hand side of the equation. This should not be there. The errors have been corrected in the PDF version of the article.

View Article and Find Full Text PDF

Motor cortex (M1) exhibits a rich repertoire of neuronal activities to support the generation of complex movements. Although recent neuronal-network models capture many qualitative aspects of M1 dynamics, they can generate only a few distinct movements. Additionally, it is unclear how M1 efficiently controls movements over a wide range of shapes and speeds.

View Article and Find Full Text PDF

Classical work has viewed primary motor cortex (M1) as a controller of muscle and body dynamics. A recent brain-computer interface (BCI) experiment suggests a new, complementary perspective: M1 is itself a dynamical system under active control of other circuits.

View Article and Find Full Text PDF

Correlated variability in cortical activity is ubiquitously quenched following stimulus onset, in a stimulus-dependent manner. These modulations have been attributed to circuit dynamics involving either multiple stable states ("attractors") or chaotic activity. Here we show that a qualitatively different dynamical regime, involving fluctuations about a single, stimulus-driven attractor in a loosely balanced excitatory-inhibitory network (the stochastic "stabilized supralinear network"), best explains these modulations.

View Article and Find Full Text PDF

Inhibitory neurons, although relatively few in number, exert powerful control over brain circuits. They stabilize network activity in the face of strong feedback excitation and actively engage in computations. Recent studies reveal the importance of a precise balance of excitation and inhibition in neural circuits, which often requires exquisite fine-tuning of inhibitory connections.

View Article and Find Full Text PDF

Two theoretical studies reveal how networks of neurons may behave during reward-based learning.

View Article and Find Full Text PDF

Populations of neurons in motor cortex engage in complex transient dynamics of large amplitude during the execution of limb movements. Traditional network models with stochastically assigned synapses cannot reproduce this behavior. Here we introduce a class of cortical architectures with strong and random excitatory recurrence that is stabilized by intricate, fine-tuned inhibition, optimized from a control theory perspective.

View Article and Find Full Text PDF

Hebbian changes of excitatory synapses are driven by and further enhance correlations between pre- and postsynaptic activities. Hence, Hebbian plasticity forms a positive feedback loop that can lead to instability in simulated neural networks. To keep activity at healthy, low levels, plasticity must therefore incorporate homeostatic control mechanisms.

View Article and Find Full Text PDF

In dynamical models of cortical networks, the recurrent connectivity can amplify the input given to the network in two distinct ways. One is induced by the presence of near-critical eigenvalues in the connectivity matrix W, producing large but slow activity fluctuations along the corresponding eigenvectors (dynamical slowing). The other relies on W not being normal, which allows the network activity to make large but fast excursions along specific directions.

View Article and Find Full Text PDF

Spike-frequency adaptation is known to enhance the transmission of information in sensory spiking neurons by rescaling the dynamic range for input processing, matching it to the temporal statistics of the sensory stimulus. Achieving maximal information transmission has also been recently postulated as a role for spike-timing-dependent plasticity (STDP). However, the link between optimal plasticity and STDP in cortex remains loose, as does the relationship between STDP and adaptation processes.

View Article and Find Full Text PDF