The characterization of physical hazards of substances is a key information to manage the risks associated to their use, storage and transport. With decades of work in this area, Ineris develops and implements cutting-edge experimental facilities allowing such characterizations at different scales and under various conditions to study all of the dreaded accident scenarios. This review presents the efforts engaged by Ineris more recently in the field of chemoinformatics to develop and use new predictive methods for the anticipation and management of industrials risks associated to energetic and reactive materials as a complement to experiments.
View Article and Find Full Text PDFThe reaction mechanism involved in the decomposition of ammonium nitrate (AN) in the presence of CaCO and CaSO, commonly used for stabilization and the reduction of explosivity properties of AN, was theoretically investigated using a computational approach based on density functional theory. The presented computational results suggest that both carbonate and sulfate anions can intercept an acid proton from nitric acid issued from the first step of decomposition of AN, thus inhibiting its runaway decomposition and the generation of reactive species (radicals). The reaction then leads to the production of stable products, as experimentally observed.
View Article and Find Full Text PDFIn this review, structure-property trends are systematically analyzed for four amphiphilic properties of sugar-based surfactants: critical micelle concentration (CMC), its associated surface tension (γ), efficiency (pC) and Krafft temperature (T). First, the impact on amphiphilic properties of the alkyl chain size and the presence of branching and/or unsaturation is investigated. Then, various polar head parameters are explored, such as the degree of polymerization of the sugar unit (mono- or oligosaccharides), the chemical nature of the linker and the sugar configuration.
View Article and Find Full Text PDFNew Quantitative Structure-Property Relationships (QSPR) are presented to predict the flash point of binary liquid mixtures, based on more than 600 experimental flash points for 60 binary mixtures. Two models are proposed based on a GA-MLR approach that uses a genetic algorithm (GA) variable selection in multilinear regressions (MLR). In these models, mixtures were characterized by a series of mixture descriptors calculated from various mixture formula combining the molecular descriptors of the single compounds constituting the mixtures and their respective molar fractions in the mixture.
View Article and Find Full Text PDFHypothesis: Surface tension of aqueous solutions of surfactants at their critical micelle concentrations (γ), may be quantitatively linked to the surfactant structure using Quantitative Structure Property Relationships (QSPR), all other factors held equal (temperature, presence of additive or salts). Thus, QSPR models can allow improved understanding and quantification of structure-γ trends, direct γ predictions, and finally help to design renewable substitutes for petroleum-based surfactants.
Experiments And Methods: A dataset of 70 γ of single surfactants at ambient temperature has been gathered from several research papers.
Quantitative structure-property relationships represent alternative method to experiments to access the estimation of physico-chemical properties of chemicals for screening purpose at R&D level but also to gather missing data in regulatory context. In particular, such predictions were encouraged by the REACH regulation for the collection of data, provided that they are developed respecting the rigorous principles of validation proposed by OECD. In this context, a series of organic peroxides, unstable chemicals which can easily decompose and may lead to explosion, were investigated to develop simple QSPR models that can be used in a regulatory framework.
View Article and Find Full Text PDFA new approach to assess the risks inherent in the implementation of powders, including nanomaterials, has been developed, based on the OHB (Occupational Hazard Band) method which is widely spread in the chemical industry. Hazard classification has not been modified; only the control of exposure has been worked at. The method applies essentially to the prevention of the exposures to airborne materials, whatever their particle size.
View Article and Find Full Text PDFOrganic peroxides are unstable chemicals which can easily decompose and may lead to explosion. Such a process can be characterized by physico-chemical parameters such as heat and temperature of decomposition, whose determination is crucial to manage related hazards. These thermal stability properties are also required within many regulatory frameworks related to chemicals in order to assess their hazardous properties.
View Article and Find Full Text PDFThe chemical mechanisms involved in the decomposition of trinitroethyl compounds were studied for both aliphatic and aromatic derivatives using density functional theory calculations. At first, in the case of 1,1,1-trinitrobutane, used as a reference molecule, two primary channels were highlighted among the five investigated ones: the breaking of the C-N bond and the HONO elimination. Then, the influence of various structural parameters was studied for these two reactions by changing the length of the carbon chain, adding substituents or double bonds along the carbon chain.
View Article and Find Full Text PDFThe decomposition mechanism of ammonium nitrate in the gas phase was investigated and fully characterized by means of CBS-QB3 calculations. Five reaction channels were identified, leading to the formation of products (N2, H2O, O2, OH, HNO, NO3) found in the experimental works. The identified mechanism well underlines the origin of the chemical hazard of ammonium nitrate which is related to the exothermicity of the lowest decomposition channels.
View Article and Find Full Text PDFThe European regulation of chemicals named REACH implies the assessment of a large number of substances based on their hazardous properties. However, the complete characterization of physico-chemical, toxicological and eco-toxicological properties by experimental means is incompatible with the imposed calendar of REACH. Hence, there is a real need in evaluating the capabilities of alternative methods such as quantitative structure-property relationship (QSPR) models, notably for physico-chemical properties.
View Article and Find Full Text PDFIn the framework of the European REACH regulation major attention was recently devoted to toxicological and ecotoxicological problems while little attention has been dedicated to other important applications concerning chemical hazards, for instance, explosive properties. In this work different chemoinformatic tools such as partial least squares, multilinear regressions, and decision trees have been used for the development of a novel quantitative structure-property relationships to predict the heat of decomposition of a series of nitroaromatic compounds. Models were conceived in order to follow the regulatory requirements according to OECD principles for the validation of QSAR methods.
View Article and Find Full Text PDFThe molecular structures of 77 nitroaromatic compounds have been correlated to their thermal stabilities by combining the quantitative structure-property relationship (QSPR) method with density functional theory (DFT). More than 300 descriptors (constitutional, topological, geometrical and quantum chemical) have been calculated, and multilinear regressions have been performed to find accurate quantitative relationships with experimental heats of decomposition (-ΔH). In particular, this work demonstrates the importance of accounting for chemical mechanisms during the selection of an adequate experimental data set.
View Article and Find Full Text PDFThe quantitative structure-property relationship (QSPR) methodology was applied to predict the decomposition enthalpies of 22 nitroaromatic compounds, used as indicators of thermal stability. An extended series of descriptors (constitutional, topological, geometrical charge related and quantum chemical) was calculated at two different levels of theory: density functional theory (DFT) and semi-empirical AM1 approaches. Reliable models have been developed for each level, leading to similar correlations between calculated and experimental data (R(2) > 0.
View Article and Find Full Text PDFThis work presents a quantitative structure-property relationship (QSPR)-based approach allowing an accurate prediction of the excited-state properties of organic dyes (anthraquinones and azobenzenes) from ground-state molecular descriptors, obtained within the (conceptual) density functional theory (DFT) framework. The ab initio computation of the descriptors was achieved at several levels of theory, so that the influence of the basis set size as well as of the modeling of environmental effects could be statistically quantified. It turns out that, for the entire data set, a statistically-robust four-variable multiple linear regression based on PCM-PBE0/6-31G calculations delivers a R(adj)(2) of 0.
View Article and Find Full Text PDFThe pathways corresponding to the most energetically favorable decomposition reactions that can be envisaged for o-nitrotoluene (and 20 of its derivatives) have been studied, using density functional theory, in order to evaluate the influence of substituents' nature (nitro, methyl, amino, carboxylic acid, and hydroxyl) and position. The first mechanism consists of the direct dissociation (homolysis) of the carbon nitrogen bond (CH(3)C(6)H(4)NO(2) = CH(3)C(6)H(4) + NO(2)) whereas the second one is a more complex process initiated by C-H alpha attack and leading to the formation of anthranil and water (C(6)H(4)C(H)ON + H(2)O). For each compound, the initial step of this last channel is the rate limiting one, the Gibbs activation energy of all systems being very close, that is all in the 40-44 kcal/mol range.
View Article and Find Full Text PDFThis work presents a new approach to predict thermal stability of nitroaromatic compounds based on quantum chemical calculations and on quantitative structure-property relationship (QSPR) methods. The data set consists of 22 nitroaromatic compounds of known decomposition enthalpy (taken as a macroscopic property related to explosibility) obtained from differential scanning calorimetry. Geometric, electronic and energetic descriptors have been selected and computed using density functional theory (DFT) calculation to describe the 22 molecules.
View Article and Find Full Text PDFThe influence of substituent nature and position on the unimolecular decomposition of nitroaromatic compounds was investigated using the density functional theory at a PBE0/6-31+G(d,p) level. As the starting point, the two main reaction paths for the decomposition of nitrobenzene were analyzed: the direct carbon nitrogen dissociation (C6H5 + NO2) and a two step mechanism leading to the formation of phenoxyl and nitro radicals (C6H5O + NO). The dissociation energy of the former reaction was calculated to be 7.
View Article and Find Full Text PDFWe report the structural properties, infrared (IR) and Raman spectra, dipole moment, polarisability, hardness and chemical potential of the trans and cis configurations of 4-hydroxyazobenzene calculated using the B3LYP functionals. All calculations were performed with the following basis sets: 6-31G, 6-31++G, 6-31G(d,p), 6-31++G(d,p), 6-31G(2d,2p), 6-31++G(2d,2p) and 6-311++G(2d,2p). We observed that 6-31++G(d,p) gives similar results to 6-311++G(2d,2p).
View Article and Find Full Text PDF