Publications by authors named "Guillaume Durey"

Controlling the anchoring of liquid crystal molecules at an interface with a water solution influences the entire organization of the underlying liquid crystal phase, which is crucial for many applications. The simplest way to stabilize such interfaces is by fabricating liquid crystal droplets in water; however, a greater sensitivity to interfacial effects can be achieved using liquid crystal shells, that is, spherical films of liquid crystal suspended in water. Anchoring transitions on those systems are traditionally triggered by the adsorption of surfactant molecules onto the interface, which is neither an instantaneous nor a reversible process.

View Article and Find Full Text PDF

Topological solitons are non-singular but topologically nontrivial structures in fields, which have fundamental significance across various areas of physics, similar to singular defects. Production and observation of singular and solitonic topological structures remain a complex undertaking in most branches of science - but in soft matter physics, they can be realized within the director field of a liquid crystal. Additionally, it has been shown that confining liquid crystals to spherical shells using microfluidics resulted in a versatile experimental platform for the dynamical study of topological transformations between director configurations.

View Article and Find Full Text PDF

The Faraday instability appears on liquid baths submitted to vertical oscillations above a critical value. The pattern of standing ripples at half the vibrating frequency that results from this parametric forcing is usually shaped by the boundary conditions imposed by the enclosing receptacle. Here, we show that the time modulation of the medium involved in the Faraday instability can act as a phase-conjugate mirror--a fact which is hidden in the extensively studied case of the boundary-driven regime.

View Article and Find Full Text PDF