Publications by authors named "Guillaume Ducharme"

The hippocampus (HP) receives neurochemically diverse inputs from the raphe nuclei, including glutamatergic axons characterized by the expression of the vesicular glutamate transporter type 3 (VGLUT3). These raphe-HP VGLUT3 projections have been suggested to play a critical role in HP functions, yet a complete anatomical overview of raphe VGLUT3 projections to the forebrain, and in particular to the HP, is lacking. Using anterograde viral tracing, we describe largely nonoverlapping VGLUT3-positive projections from the dorsal raphe (DR) and median raphe (MnR) to the forebrain, with the HP receiving inputs from the MnR.

View Article and Find Full Text PDF

Conducting polymer coatings on metal electrodes are an efficient solution to improve neural signal recording and stimulation, due to their mixed electronic-ionic conduction and biocompatibility. To date, only a few studies have been reported on conducting polymer coatings on metallic wire electrodes for muscle signal recording. Chronic muscle signal recording of freely moving animals can be challenging to acquire with coated electrodes, due to muscle movement around the electrode that can increase instances of coating delamination and device failure.

View Article and Find Full Text PDF

The medial septum and diagonal band of Broca (MS-DBB) has an essential role for theta rhythm generation in the hippocampus and is critical for learning and memory. The MS-DBB contains cholinergic, GABAergic, and recently described glutamatergic neurons, but their specific contribution to theta generation is poorly understood. Here, we examined the role of MS-DBB glutamatergic neurons in theta rhythm using optogenetic activation and electrophysiological recordings performed in in vitro preparations and in freely behaving mice.

View Article and Find Full Text PDF

Hippocampal theta rhythm arises from a combination of recently described intrinsic theta oscillators and inputs from multiple brain areas. Interneurons expressing the markers parvalbumin (PV) and somatostatin (SOM) are leading candidates to participate in intrinsic rhythm generation and principal cell (PC) coordination in distal CA1 and subiculum. We tested their involvement by optogenetically activating and silencing PV or SOM interneurons in an intact hippocampus preparation that preserves intrinsic connections and oscillates spontaneously at theta frequencies.

View Article and Find Full Text PDF

Post-mortem studies suggest that GABAergic neurotransmission is impaired in schizophrenia. However, it remains unclear if these changes occur early during development and how they impact overall network activity. To investigate this, we used a mouse model of prenatal infection with the viral mimic, polyriboinosinic-polyribocytidilic acid (poly I:C), a model based on epidemiological evidence that an immune challenge during pregnancy increases the prevalence of schizophrenia in the offspring.

View Article and Find Full Text PDF

The shape and volume of microglia (brain immune cells) change when they activate during brain inflammation and become migratory and phagocytic. Swollen rat microglia express a large Cl(-) current (I(Clswell)), whose biophysical properties and functional roles are poorly understood and whose molecular identity is unknown. We constructed a fingerprint of useful biophysical properties for comparison with I(Clswell) in other cell types and with cloned Cl(-) channels.

View Article and Find Full Text PDF