Publications by authors named "Guillaume Dolla"

Phospholipase A2 receptor 1 (PLA2R1) is a 180-kDa transmembrane protein that plays a role in inflammation and cancer and is the major autoantigen in membranous nephropathy, a rare but severe autoimmune kidney disease. A soluble form of PLA2R1 has been detected in mouse and human serum. It is likely produced by proteolytic shedding of membrane-bound PLA2R1 but the mechanism is unknown.

View Article and Find Full Text PDF

Background And Objectives: Patients with membranous nephropathy can have circulating autoantibodies against membrane-bound (phospholipase A2 receptor 1 [PLA2R1] and thrombospondin type-1 domain containing 7A [THSD7A]) and intracellular (aldose reductase, SOD2, and α-enolase) podocyte autoantigens. We studied their combined association with clinical outcomes.

Design, Setting, Participants, & Measurements: Serum levels of anti-PLA2R1, anti-THSD7A, anti-aldose reductase, anti-SOD2, and anti-α-enolase autoantibodies were determined in 285 patients at diagnosis and during follow-up using standardized and homemade assays.

View Article and Find Full Text PDF

The phospholipase A2 receptor (PLA2R1) is the major autoantigen in idiopathic membranous nephropathy (MN). However, the pathogenic role of anti-PLA2R1 autoantibodies is unclear. Our aim was to evaluate the in vitro cytotoxicity of anti-PLA2R1 antibodies mediated by complement.

View Article and Find Full Text PDF

Autoantibodies against phospholipase A2 receptor 1 (PLA2R1) and thrombospondin type 1 domain-containing 7A (THSD7A) are emerging as biomarkers to classify membranous nephropathy (MN) and to predict outcome or response to treatment. Anti-THSD7A autoantibodies are detected by Western blot and indirect immunofluorescence test (IIFT). Here, we developed a sensitive enzyme-linked immunosorbent assay (ELISA) optimized for quantitative detection of anti-THSD7A autoantibodies.

View Article and Find Full Text PDF

The phospholipase A2 receptor (PLA2R1) is the major autoantigen in idiopathic membranous nephropathy. However, the value of anti-PLA2R1 antibody titers in predicting patient outcomes is unknown. Here, we screened serum samples from 50 patients positive for PLA2R1 for immunoreactivity against a series of PLA2R1 deletion mutants covering the extracellular domains.

View Article and Find Full Text PDF

About 70% of patients with idiopathic membranous nephropathy (iMN) have autoantibodies to the phospholipase A2 receptor PLA2R1. We screened sera from iMN patients for their cross-reactivity to human (h), rabbit (rb) and mouse (m) PLA2R1 by western blot (WB) and antigen-specific ELISAs. All iMN patients recognized hPLA2R1 and rbPLA2R1 by WB, and a rbPLA2R1 ELISA was as sensitive as the standardized hPLA2R1 ELISA to monitor anti-PLA2R1 in patients with active disease or in drug-induced remission.

View Article and Find Full Text PDF

Background: Idiopathic membranous nephropathy is an autoimmune disease. In approximately 70% of patients, it is associated with autoantibodies against the phospholipase A2 receptor 1 (PLA2R1). Antigenic targets in the remaining patients are unknown.

View Article and Find Full Text PDF

PLA2R1 is a large transmembrane receptor of 180-kDa that belongs to the superfamily of C-type lectins. It was discovered because of its high affinity for secreted phospholipases A2 (sPLA2), enzymes that play a key role in lipid mediator synthesis. Early PLA2R1 physiological roles include the clearance of sPLA2 from the extracellular medium and/or promotion of their actions.

View Article and Find Full Text PDF