Autonomous navigation relies on the crucial aspect of perceiving the environment to ensure the safe navigation of an autonomous platform, taking into consideration surrounding objects and their potential movements. Consequently, a fundamental requirement arises to accurately track and predict these objects' trajectories. Three deep recurrent network architectures were defined to achieve this, fine-tuning their weights to optimize the tracking process.
View Article and Find Full Text PDFAutonomous vehicles require precise and reliable self-localization to cope with dynamic environments. The field of visual place recognition (VPR) aims to solve this challenge by relying on the visual modality to recognize a place despite changes in the appearance of the perceived visual scene. In this paper, we propose to tackle the VPR problem following a neuro-cybernetic approach.
View Article and Find Full Text PDF