Genome streamlining, i.e. genome size reduction, is observed in bacteria with very different life traits, including endosymbiotic bacteria and several marine bacteria, raising the question of its evolutionary origin.
View Article and Find Full Text PDFViruses evolve by periods of relative stasis interleaved with sudden, rapid series of mutation fixations, known as evolutionary bursts. These bursts can be triggered by external factors, such as environmental changes, antiviral therapies, or spill-overs from reservoirs into novel host species. However, it has also been suggested that bursts may result from the intrinsic evolutionary dynamics of viruses.
View Article and Find Full Text PDFGene duplication has a central role in evolution; still, little is known on the fates of the duplicated copies, their relative frequency, and on how environmental conditions affect them. Moreover, the lack of rigorous definitions concerning the fate of duplicated genes hinders the development of a global vision of this process. In this paper, we present a new framework aiming at characterizing and formally differentiating the fate of duplicated genes.
View Article and Find Full Text PDFWhile chromosomal rearrangements are ubiquitous in all domains of life, very little is known about their evolutionary significance, mostly because, apart from a few specifically studied and well-documented mechanisms (interaction with recombination, gene duplication, etc.), very few models take them into account. As a consequence, we lack a general theory to account for their direct and indirect contributions to evolution.
View Article and Find Full Text PDFMolecular evolution is often conceptualised as adaptive walks on rugged fitness landscapes, driven by mutations and constrained by incremental fitness selection. It is well known that epistasis shapes the ruggedness of the landscape's surface, outlining their topography (with high-fitness peaks separated by valleys of lower fitness genotypes). However, within the strong selection weak mutation (SSWM) limit, once an adaptive walk reaches a local peak, natural selection restricts passage through downstream paths and hampers any possibility of reaching higher fitness values.
View Article and Find Full Text PDFDNA supercoiling, the level of under- or overwinding of the DNA polymer around itself, is widely recognized as an ancestral regulation mechanism of gene expression in bacteria. Higher levels of negative supercoiling facilitate the opening of the DNA double helix at gene promoters and thereby increase gene transcription rates. Different levels of supercoiling have been measured in bacteria exposed to different environments, leading to the hypothesis that variations in supercoiling could be a response to changes in the environment.
View Article and Find Full Text PDFExperimental studies demonstrate the existence of phenotypic diversity despite constant genotype and environment. Theoretical models based on a single phenotypic character predict that during an adaptation event, phenotypic noise should be positively selected far from the fitness optimum because it increases the fitness of the genotype, and then be selected against when the population reaches the optimum. It is suggested that because of this fitness gain, phenotypic noise should promote adaptive evolution.
View Article and Find Full Text PDFEvolution provides a creative fount of complex and subtle adaptations that often surprise the scientists who discover them. However, the creativity of evolution is not limited to the natural world: Artificial organisms evolving in computational environments have also elicited surprise and wonder from the researchers studying them. The process of evolution is an process that transcends the substrate in which it occurs.
View Article and Find Full Text PDFUsing the in silico experimental evolution platform Aevol, we have tested the existence of a by evolving populations of digital organisms under environmental conditions in which simple organisms can very well thrive and reproduce. We observed that in most simulations, organisms become complex although such organisms are a lot less fit than simple ones and have no robustness or evolvability advantage. This excludes selection from the set of possible explanations for the evolution of complexity.
View Article and Find Full Text PDFBackground: Mutators are common in bacterial populations, both in natural isolates and in the lab. The fate of these lineages, which mutation rate is increased up to 100 ×, has long been studied using population genetics models, showing that they can spread in a population following an environmental change. However in stable conditions, they suffer from the increased mutational load, hence being overcome by non-mutators.
View Article and Find Full Text PDFMetabolic cross-feeding interactions between microbial strains are common in nature, and emerge during evolution experiments in the laboratory, even in homogeneous environments providing a single carbon source. In sympatry, when the environment is well-mixed, the reasons why emerging cross-feeding interactions may sometimes become stable and lead to monophyletic genotypic clusters occupying specific niches, named ecotypes, remain unclear. As an alternative to evolution experiments in the laboratory, we developed Evo2Sim, a multi-scale model of in silico experimental evolution, equipped with the whole tool case of experimental setups, competition assays, phylogenetic analysis, and, most importantly, allowing for evolvable ecological interactions.
View Article and Find Full Text PDFThe open-endedness of a system is often defined as a continual production of novelty. Here we pin down this concept more fully by defining several types of novelty that a system may exhibit, classified as variation, innovation, and emergence. We then provide a meta-model for including levels of structure in a system's model.
View Article and Find Full Text PDFBackground: Gene expression is an inherently stochastic process, owing to its dynamic molecular nature. Protein amount distributions, which can be acquired by cytometry using a reporter gene, can inform about the mechanisms of the underlying microscopic molecular system.
Results: By using different clones of chicken erythroid progenitor cells harboring different integration sites of a CMV-driven mCherry protein, we investigated the dynamical behavior of such distributions.
Despite the stochastic noise that characterizes all cellular processes the cells are able to maintain and transmit to their daughter cells the stable level of gene expression. In order to better understand this phenomenon, we investigated the temporal dynamics of gene expression variation using a double reporter gene model. We compared cell clones with transgenes coding for highly stable mRNA and fluorescent proteins with clones expressing destabilized mRNA-s and proteins.
View Article and Find Full Text PDFDNA torsional stress is generated by virtually all biomolecular processes involving the double helix, in particular transcription where a significant level of stress propagates over several kilobases. If another promoter is located in this range, this stress may strongly modify its opening properties, and hence facilitate or hinder its transcription. This mechanism implies that transcribed genes distant of a few kilobases are not independent, but coupled by torsional stress, an effect for which we propose the first quantitative and systematic model.
View Article and Find Full Text PDFWe present a model for genome size evolution that takes into account both local mutations such as small insertions and small deletions, and large chromosomal rearrangements such as duplications and large deletions. We introduce the possibility of undergoing several mutations within one generation. The model, albeit minimalist, reveals a non-trivial spontaneous dynamics of genome size: in the absence of selection, an arbitrary large part of genomes remains beneath a finite size, even for a duplication rate 2.
View Article and Find Full Text PDFComparative genomics has revealed that some species have exceptional genomes, compared to their closest relatives. For instance, some species have undergone a strong reduction of their genome with a drastic reduction of their genic repertoire. Deciphering the causes of these atypical trajectories can be very difficult because of the many phenomena that are intertwined during their evolution (e.
View Article and Find Full Text PDFMeasurements of protein motion in living cells and membranes consistently report transient anomalous diffusion (subdiffusion) that converges back to a Brownian motion with reduced diffusion coefficient at long times after the anomalous diffusion regime. Therefore, slowed-down Brownian motion could be considered the macroscopic limit of transient anomalous diffusion. On the other hand, membranes are also heterogeneous media in which Brownian motion may be locally slowed down due to variations in lipid composition.
View Article and Find Full Text PDFBackground: A number of studies have established that stochasticity in gene expression may play an important role in many biological phenomena. This therefore calls for further investigations to identify the molecular mechanisms at stake, in order to understand and manipulate cell-to-cell variability. In this work, we explored the role played by chromatin dynamics in the regulation of stochastic gene expression in higher eukaryotic cells.
View Article and Find Full Text PDFProg Biophys Mol Biol
September 2012
For decades, most of molecular biology was driven by the "central dogma" in which the phenotype is defined by the genotype following a fully deterministic point of view. However, during the last 10 years, a wealth of studies has demonstrated that a given genotype can generate multiple phenotypes in identical environmental conditions, mainly because of the inherently probabilistic nature of the transcription process. It has also been shown that cells can tune this variability at the molecular level.
View Article and Find Full Text PDF