Background: Association of drugs acting against different antiangiogenic mechanisms may increase therapeutic effect and reduce resistance. Noninvasive monitoring of changes in the antiangiogenic response of individual tumors could guide selection and administration of drug combinations. Noninvasive detection of early therapeutic response during dual, vertical targeting of the vascular endothelial growth factor pathway was investigated in an ectopic subcutaneous xenograft model for human pancreatic tumor.
View Article and Find Full Text PDFAngiogenesis, the formation of new vessels, is one of the key mechanisms in tumor development and an appealing target for therapy. Non-invasive, high-resolution, high-sensitivity, quantitative 3-D imaging techniques are required to correctly depict tumor heterogeneous vasculature over time. Ultrafast Doppler was recently introduced and provides an unprecedented combination of resolution, penetration depth and sensitivity without requiring any contrast agents.
View Article and Find Full Text PDFPurpose: The FIGO score cannot accurately stratify low-risk gestational trophoblastic neoplasia (GTN) patients who develop chemoresistance to single agent methotrexate chemotherapy. Tumour vascularisation is a key risk factor and its quantification may provide non-invasive way of complementing risk assessment.
Materials And Methods: 187 FIGO-staged, low-risk GTN patients were prospectively recruited.
Purpose: Sensitivity of contrast-enhanced ultrasound (CEUS) to microvascular flow modifications can be limited by intra-injection variability (injected dose, rate, volume).
Procedures: To evaluate the effect of injection variability on microvascular flow evaluation, CEUS was compared between controlled and manual injections where enhancement was assessed in vitro within a flow phantom, in normal murine kidney (N = 12) and in murine ectopic tumors (N = 10).
Results: For both in vitro and in vivo measurements in the renal cortex, controlled injections significantly improved reproducibility of functional parameter estimation.
Dynamic contrast-enhanced ultrasound (DCE-US) sequences are subject to motion which can disturb functional flow quantification. This can make estimated parameters more variable or unreliable. Methods that compensate for motion are therefore desirable.
View Article and Find Full Text PDFThis study proposes a new method for automatic, iterative image registration in the context of dynamic contrast-enhanced ultrasound (DCE-US) imaging. By constructing a cost function of image registration using a combination of the tissue and contrast-microbubble responses, this new method, referred to as dual-mode registration, performs alignment based on both tissue and vascular structures. Data from five focal liver lesions (FLLs) were used for the evaluation.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
November 2013
Perfusion parameter estimation from dynamic contrast-enhanced ultrasound (DCE-US) data relies on fitting parametric models of flow to curves describing linear echo power as a function of time. The least squares criterion is generally used to fit these models to data. This criterion is optimal in the sense of maximum likelihood under the assumption of an additive white Gaussian noise.
View Article and Find Full Text PDF