Publications by authors named "Guillaume Adelmant"

Target-based screening of covalent fragment libraries with mass spectrometry has emerged as a powerful strategy to identify chemical starting points for small molecule inhibitors or find new binding pockets on proteins of interest. These libraries span diverse chemical space with a modest number of compounds. Screening covalent fragments against purified protein targets reduces the demands on the mass spectrometer with respect to absolute throughput, detection limit, and dynamic range.

View Article and Find Full Text PDF

Deubiquitinating enzymes (DUBs) are an emerging drug target class of ~100 proteases that cleave ubiquitin from protein substrates to regulate many cellular processes. A lack of selective chemical probes impedes pharmacologic interrogation of this important gene family. DUBs engage their cognate ligands through a myriad of interactions.

View Article and Find Full Text PDF

Deleted in Breast Cancer 1 (DBC1) is an important metabolic sensor. Previous studies have implicated DBC1 in various cellular functions, notably cell proliferation, apoptosis, histone modification, and adipogenesis. However, current reports about the role of DBC1 in tumorigenesis are controversial and designate DBC1 alternatively as a tumor suppressor or a tumor promoter.

View Article and Find Full Text PDF

Parallel reaction monitoring (PRM) has emerged as a popular approach for targeted protein quantification. With high ion utilization efficiency and first-in-class acquisition speed, the timsTOF Pro provides a powerful platform for PRM analysis. However, sporadic chromatographic drift in peptide retention time represents a fundamental limitation for the reproducible multiplexing of targets across PRM acquisitions.

View Article and Find Full Text PDF

The peptidyl-prolyl isomerase, Pin1, is exploited in cancer to activate oncogenes and inactivate tumor suppressors. However, despite considerable efforts, Pin1 has remained an elusive drug target. Here, we screened an electrophilic fragment library to identify covalent inhibitors targeting Pin1's active site Cys113, leading to the development of Sulfopin, a nanomolar Pin1 inhibitor.

View Article and Find Full Text PDF

Complex neural circuitry requires stable connections formed by lengthy axons. To maintain these functional circuits, fast transport delivers RNAs to distal axons where they undergo local translation. However, the mechanism that enables long-distance transport of RNA granules is not yet understood.

View Article and Find Full Text PDF
Article Synopsis
  • * The activation of Notch in these cells triggers a specific gene expression program linked to cell lineage, including several genes responsible for DNA damage response, which are essential for the differentiation of cancerous squamous cells.
  • * Notch signaling and the DNA damage response pathways work together on shared genes that facilitate cell differentiation, potentially eliminating damaged cells, while interactions between Notch and the PP2A protein suggest a mechanism for integrating various signaling pathways that influence squamous cell differentiation.
View Article and Find Full Text PDF

DNA double-strand breaks (DSBs) are repaired through homology-directed repair (HDR) or non-homologous end joining (NHEJ). BRCA1/2-deficient cancer cells cannot perform HDR, conferring sensitivity to poly(ADP-ribose) polymerase inhibitors (PARPi). However, concomitant loss of the pro-NHEJ factors 53BP1, RIF1, REV7-Shieldin (SHLD1-3) or CST-DNA polymerase alpha (Pol-α) in BRCA1-deficient cells restores HDR and PARPi resistance.

View Article and Find Full Text PDF

Alterations involving serine-threonine phosphatase PP2A subunits occur in a range of human cancers, and partial loss of PP2A function contributes to cell transformation. Displacement of regulatory B subunits by the SV40 Small T antigen (ST) or mutation/deletion of PP2A subunits alters the abundance and types of PP2A complexes in cells, leading to transformation. Here, we show that ST not only displaces common PP2A B subunits but also promotes A-C subunit interactions with alternative B subunits (B''', striatins) that are components of the Striatin-interacting phosphatase and kinase (STRIPAK) complex.

View Article and Find Full Text PDF

Canonical Notch signaling relies on regulated proteolysis of the receptor Notch to generate a nuclear effector that induces the transcription of Notch-responsive genes. In higher organisms, one Notch-responsive gene that is activated in many different cell types encodes the Notch-regulated ankyrin repeat protein (NRARP), which acts as a negative feedback regulator of Notch responses. Here, we showed that NRARP inhibited the growth of Notch-dependent T cell acute lymphoblastic leukemia (T-ALL) cell lines and bound directly to the core Notch transcriptional activation complex (NTC), requiring both the transcription factor RBPJ and the Notch intracellular domain (NICD), but not Mastermind-like proteins or DNA.

View Article and Find Full Text PDF

Mitotic cells attenuate the DNA damage response (DDR) by phosphorylating 53BP1, a critical DDR mediator, to prevent its localization to damaged chromatin. Timely dephosphorylation of 53BP1 is critical for genome integrity, as premature recruitment of 53BP1 to DNA lesions impairs mitotic fidelity. Protein phosphatase 4 (PP4) dephosphorylates 53BP1 in late mitosis to allow its recruitment to DNA lesions in G1.

View Article and Find Full Text PDF

Affinity purification followed by mass spectrometry has become the technique of choice to identify binding partners in biochemical complexes isolated from a physiologic cellular context. In this report we detail our protocol for tandem affinity purification (TAP) primarily based on the use of the FLAG and HA peptide epitopes, with a particular emphasis on factors affecting yield and specificity, as well as steps to implement an automated version of the TAP procedure. © 2019 by John Wiley & Sons, Inc.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are a byproduct of cell metabolism, and can also arise from environmental sources, such as toxins or radiation. Depending on dose and context, ROS have both beneficial and deleterious roles in mammalian development and disease, therefore it is crucial to understand how these molecules are generated, sensed, and detoxified. The question of how oxidative stress connects to the epigenome, in particular, is important yet incompletely understood.

View Article and Find Full Text PDF

Targeting the activation function-1 (AF-1) domain located in the N-terminus of the androgen receptor (AR) is an attractive therapeutic alternative to the current approaches to inhibit AR action in prostate cancer (PCa). Here we show that the AR AF-1 is bound by the cochaperone Bag-1L. Mutations in the AR interaction domain or loss of Bag-1L abrogate AR signaling and reduce PCa growth.

View Article and Find Full Text PDF

DNA methylation is an essential epigenetic mark in mammals that has to be re-established after each round of DNA replication. The protein UHRF1 is essential for this process; it has been proposed that the protein targets newly replicated DNA by cooperatively binding hemi-methylated DNA and H3K9me2/3, but this model leaves a number of questions unanswered. Here, we present evidence for a direct recruitment of UHRF1 by the replication machinery via DNA ligase 1 (LIG1).

View Article and Find Full Text PDF

To maintain cellular homeostasis, subcellular organelles communicate with each other and form physical and functional networks through membrane contact sites coupled by protein tethers. In particular, endoplasmic reticulum (ER)-mitochondrial contacts (EMC) regulate diverse cellular activities such as metabolite exchange (Ca and lipids), intracellular signaling, apoptosis, and autophagy. The significance of EMCs has been highlighted by reports indicating that EMC dysregulation is linked to neurodegenerative diseases.

View Article and Find Full Text PDF

The p110β isoform of PI3K is preferentially activated in many tumors deficient in the phosphatase and tensin homolog (PTEN). However, the mechanism(s) linking PTEN loss to p110β activation remain(s) mysterious. Here, we identify CRKL as a member of the class of PI3Kβ-interacting proteins.

View Article and Find Full Text PDF

The continued evolution of modern mass spectrometry instrumentation and associated methods represents a critical component in efforts to decipher the molecular mechanisms which underlie normal physiology and understand how dysregulation of biological pathways contributes to human disease. The increasing scale of these experiments combined with the technological diversity of mass spectrometers presents several challenges for community-wide data access, analysis, and distribution. Here we detail a redesigned version of multiplierz, our Python software library which leverages our common application programming interface (mzAPI) for analysis and distribution of proteomic data.

View Article and Find Full Text PDF

Through an shRNA screen, we identified the protein arginine methyltransferase Prmt1 as a vulnerable intervention point in murine p53/Rb-null osteosarcomas, the human counterpart of which lacks effective therapeutic options. Depletion of Prmt1 in p53-deficient cells impaired tumor initiation and maintenance and Mechanistic studies reveal that translation-associated pathways were enriched for Prmt1 downstream targets, implicating Prmt1 in translation control. In particular, loss of Prmt1 led to a decrease in arginine methylation of the translation initiation complex, thereby disrupting its assembly and inhibiting translation.

View Article and Find Full Text PDF

Serine/threonine kinase 40 (STK40) was originally identified as a distant homolog of Tribbles-family proteins. Despite accumulating data attesting to the importance of STK40 in a variety of different physiologic processes, little is known about its biological activity or mechanism of action. Here, we show that STK40 interacts with Constitutive Photomorphogenic Protein 1 (COP1), relying primarily on a C-terminal sequence analogous to the motif found in Tribbles proteins.

View Article and Find Full Text PDF

COP1 proteins are E3 ubiquitin ligases that regulate phototropism in plants and target transcription factors for degradation in mammals. The substrate-binding region of COP1 resides within a WD40-repeat domain that also binds to Trib proteins, which are adaptors for C/EBPα degradation. Here we report structures of the human COP1 WD40 domain in isolation, and complexes of the human and Arabidopsis thaliana COP1 WD40 domains with the binding motif of Trib1.

View Article and Find Full Text PDF

EP300-interacting inhibitor of differentiation 1 (EID1) belongs to a protein family implicated in the control of transcription, differentiation, DNA repair, and chromosomal maintenance. EID1 has a very short half-life, especially in G0 cells. We discovered that EID1 contains a peptidic, modular degron that is necessary and sufficient for its polyubiquitylation and proteasomal degradation.

View Article and Find Full Text PDF

Deleted in breast cancer-1 (DBC1) contributes to the regulation of cell survival and apoptosis. Recent studies demonstrated that DBC is phosphorylated at Thr454 by ATM/ATR kinases in response to DNA damage, which is a critical event for p53 activation and apoptosis. However, how DBC1 phosphorylation is regulated has not been studied.

View Article and Find Full Text PDF

Activating mutations in genes encoding G protein α (Gα) subunits occur in 4-5% of all human cancers, but oncogenic alterations in Gβ subunits have not been defined. Here we demonstrate that recurrent mutations in the Gβ proteins GNB1 and GNB2 confer cytokine-independent growth and activate canonical G protein signaling. Multiple mutations in GNB1 affect the protein interface that binds Gα subunits as well as downstream effectors and disrupt Gα interactions with the Gβγ dimer.

View Article and Find Full Text PDF